
An Experience Report on
Analyzing Industrial Software Systems

Using Code Clone Detection Techniques �

 Norihiro Yoshida (NAIST)
Yoshiki Higo, Shinji Kusumoto, Katsuro Inoue (Osaka University)�

Outline �

1.  What is a code clone?
2.  Discussions on the harmfulness of code

clone
3.  Importance of sharing industrial experiences

with clone
4.  Industrial application of clone analysis
}  Analysis tools
}  Result

5.  Summary	

What is a code clone?	

3

}  A code fragment that has identical or similar code fragments
to it in source code.

}  Introduced in source program by various reasons such as
reusing code by `copy-and-paste’

Code Clone

Discussions on the harmfulness of code clone 
(Opponent)	

There have been numerous discussions:
}  Cloning opponent: “clone should be avoided because

it makes software maintenance difficult.”
}  Book on programming practice
}  Research papers that is a little bit less than state-of-the-art

 Code Clone Bug is
found	

Bug is
found	

The other clones
should be inspected.	

Discussions on the harmfulness of code clone
(Moderate & Proponent)�

}  Moderate: “Clone is unavoidable when a language
lacks suitable modularization mechanism to
eliminate it.”
}  e.g., it is difficult to merge code clones into a function in the

case that the identifiers are unmatched.

}  Clone proponent: “Clones do not often cause bugs, so
leave it be.”	

}  According to Rahman’s study [1] of OSS, there is no significant

relationship among locations of bug and clones.	

[1] Rahman, et al., “Clones: What is that Smell?”, MSR 2011

Importance of sharing experiences
with cloning�
}  Which is truth of code clones?

}  There is no conclusion currently.
}  Probably it depends on the context of cloning [2].

}  Sharing experience with cloning is a promising way for
easy identification of harmful and harmless clones.

}  Software engineering community has to report
experience with clone detection and analysis.

[2] Kapser, et al., “"Cloning considered harmful" considered harmful: patterns of cloning in
software”, Empirical Software Engineering, 2008.

Researches on cloning in industry�
}  Much research have been done on

}  Automatic clone detection
}  Analysis of code clones in OSS

}  On the other hand, quantity of reports on cloning in
industry has been lacking.
}  Ratio of clones to whole source code is higher in industry than

in OSS
}  Rather than in OSS, clone causes a problem in industry.

It is needed to report an industrial experience
with clone analysis.

Overview of industrial case study �

1.  Investigated an industrial software in terms of the
following points by clone analysis technique.

A.  Is there significant difference in clones between the ends
of the unit testing and the combined testing?

B.  Where clones are concentrated in the source code?
C.  What sort of characteristic clones are involved in the

source code?

2.  Interviewed developers for detected clones

Target software project�
}  Japanese governmental project

}  Software system for traffic infrastructure

}  Source code
}  Approximately 100,000 LOC, and increased by 20 thousands

after the unit test.
}  Main language is C/C++

}  Organization
}  5 vendors, each of which was assigned for a subsystem.
}  1 project manager from a company different from the vendors

Tools for clone detection & analysis �
}  Clone detection tool : CCFinder [3]

}  Detection of lexically-similar code clones based on the
identification of identical token sequences in source code

}  Code clone analyzer : Gemini [4]
}  Scatter plot
}  Metrics for extracting clones

[3] T. Kamiya, et al.: "A multilinguistic token-based code clone detection system for
large scale source code”, IEEE TSE, 2002.
[4] Y. Ueda, et al.: “Gemini: Maintenance Support Environment Based on Code Clone
Analysis”, METRICS 2002.	

Token-based clone detection tool :
CCFinder

Detection of identical token sequences
in source code 	
 Source files

Lexical analysis

Transformation

Token sequence

Match detection

Transformed token sequence

Clones on transformed sequence

Formatting

Clone pairs

 1. static void foo() throws RESyntaxException {
 2. String a[] = new String [] { "123,400", "abc", "orange 100" };
 3. org.apache.regexp.RE pat = new org.apache.regexp.RE("[0-9,]+");
 4. int sum = 0;
 5. for (int i = 0; i < a.length; ++i)
 6. if (pat.match(a[i]))
 7. sum += Sample.parseNumber(pat.getParen(0));
 8. System.out.println("sum = " + sum);
 9. }
10. static void goo(String [] a) throws RESyntaxException {
11. RE exp = new RE("[0-9,]+");
12. int sum = 0;
13. for (int i = 0; i < a.length; ++i)
14. if (exp.match(a[i]))
15. sum += parseNumber(exp.getParen(0));
16. System.out.println("sum = " + sum);
17. }

static void foo () { String a

[] = new String [] { "123,400" ,

"abc" , "orange 100" } ;

int sum = 0

; for (int i = 0 ; i <

a . length ; ++ i)

sum

+= pat . getParen 0

; System . out . println ("sum = "

+ sum) ; }

throws RESyntaxException

Sample . parseNumber (

))

if pat

. match a [i]())

org . apache . regexp

. RE pat = new org . apache . regexp

. RE ("[0-9,]+") ;

static void goo (

) {

String

a []

int sum = 0

; for (int i = 0 ; i <

a . length ; ++ i)

System . out . println ("sum = " + sum

) ; }

throws RESyntaxException

if exp

. match a [i]())

exp =

new RE ("[0-9,]+") ;

(

RE

sum

+= exp . getParen 0

;

parseNumber ())(

(

(

[] = new String [] {

} ;

int sum = 0

; for (int i = 0 ; i <

a . length ; ++ i)

sum

+= pat . getParen 0

; System . out . println ("sum = "

+ sum) ; }

Sample . parseNumber (

))

if pat

. match a [i]())

pat = new

RE ("[0-9,]+") ;

static void goo (

) {

String

a []

int sum = 0

; for (int i = 0 ; i <

a . length ; ++ i)

System . out . println ("sum = " + sum

) ; }

throws RESyntaxException

if exp

. match a [i]())

exp =

new RE ("[0-9,]+") ;

(

RE

sum

+= exp . getParen 0

;

parseNumber ((

(

(

static void foo () { String athrows RESyntaxException

$

RE

$.))

Lexical analysis

Transformation

Token sequence

Match detection

Transformed token sequence

Clones on transformed sequence

Formatting

[] = new String [] {

} ;

int sum = 0

; for (int i = 0 ; i <

a . length ; ++ i)

sum

+= pat . getParen 0

; System . out . println ("sum = "

+ sum) ; }

Sample . parseNumber (

))

if pat

. match a [i]())

pat = new

RE ("[0-9,]+") ;

static void goo (

) {

String

a []

int sum = 0

; for (int i = 0 ; i <

a . length ; ++ i)

System . out . println ("sum = " + sum

) ; }

throws RESyntaxException

if exp

. match a [i]())

exp =

new RE ("[0-9,]+") ;

(

RE

sum

+= exp . getParen 0

;

parseNumber ())(

(

(

static void foo () { String athrows RESyntaxException

$

RE

$.

[] = [] {

} ;

=

; for (= ; <

. ; ++)

+= .

; . . (

+) ; }

. (

))

if

. []())

=

() ;

static (

) {[]

=

; (= ; <

. ; ++)

. . (+

) ; }

throws

if

. []())

=

new () ;

(

+= .

;

())(

(

(

static $ () {throws

$

$.

$ $ $ $

$ $

$ $

$ $ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $ $

new

forfor

new

[] = [] {

} ;

=

; for (= ; <

. ; ++)

+= .

; . . (

+) ; }

. (

))

if

. []())

=

() ;

static (

) {[]

=

; (= ; <

. ; ++)

. . (+

) ; }

throws

if

. []())

=

new () ;

(

+= .

;

())(

(

(

static $ () {throws

$

$.

$ $ $ $

$ $

$ $

$ $ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $ $

Lexical analysis

Transformation

Token sequence

Match detection

Transformed token sequence

Clones on transformed sequence

Formatting

 1. static void foo() throws RESyntaxException {
 2. String a[] = new String [] { "123,400", "abc", "orange 100" };
 3. org.apache.regexp.RE pat = new org.apache.regexp.RE("[0-9,]+");
 4. int sum = 0;
 5. for (int i = 0; i < a.length; ++i)
 6. if (pat.match(a[i]))
 7. sum += Sample.parseNumber(pat.getParen(0));
 8. System.out.println("sum = " + sum);
 9. }
10. static void goo(String [] a) throws RESyntaxException {
11. RE exp = new RE("[0-9,]+");
12. int sum = 0;
13. for (int i = 0; i < a.length; ++i)
14. if (exp.match(a[i]))
15. sum += parseNumber(exp.getParen(0));
16. System.out.println("sum = " + sum);
17. }

Lexical analysis

Transformation

Token sequence

Match detection

Transformed token sequence

Clones on transformed sequence

Formatting

Code clone analyzer : Gemini
Scatter Plot

}  Visually shows where code
clones are

}  Both the vertical and
horizontal axes represent
the token sequence of
source code
}  The original point is the

upper left corner

}  means that
corresponding two tokens
on the two axes are the
same

a c a c a c b b b c c a b d e f c d

F1 F2 F3

F1
F2

F3

F4

e f

a
c
a

c
a

b
b

b
c
c
a
b d

e
f

c
d
e
f

F4

c

D1 D2

D
1

D
2

F1, F2, F3, F4 : files
D1, D2 : directories

: matched position detected as a non - interesting code clone
: matched position detected as a practical code clone

a c a c a c b b b c c a b d e f c d

F1 F2 F3

F1
F2

F3

F4

e f

a
c
a

c
a

b
b

b
c
c
a
b d

e
f

c
d
e
f

F4

c

D1 D2

D
1

D
2

F1, F2, F3, F4 : files
D1, D2 : directories

: matched position detected as a non - interesting code clone
: matched position detected as a practical code clone

Code clone analyzer : Gemini
Clone/File Metrics

}  Example of clone metrics
}  LEN(S): the average length of code fragments (the number of tokens) in clone

set S
}  clone set : a set of code fragments, in which any pair of the code fragments

is a code clone
}  NIF(S): the number of source files including any fragments of S

}  Example of file metrics
}  ROC(F): the ratio of duplication of file F

}  if completely duplicated, the value is 1.0
}  if not duplicated at all, the value is 0.0

}  NOC(F): the number of code fragments of any clone set in file F

Amount of Code Clones in Subsystems �
Company
ID	

After
unit testing	

After
combined testing	

# clones	
 Duplicated
ratio 	

# clones	
 Duplicated
ratio	

V	
 259	
 34%	
 259	
 33%	

W	
 369	
 27%	
 379	
 26%	

X	
 4,483	
 55%	
 4,768	
 51%	

Y	
 6,747	
 43%	
 7,628	
 46%	

Z	
 2,450	
 56%	
 2,505	
 56%	

Amount of Code Clones in Subsystems �
Company
ID	

After
unit testing	

After
combined testing	

# clones	
 Duplicated
ratio 	

# clones	
 Duplicated
ratio	

V	
 259	
 34%	
 259	
 33%	

W	
 369	
 27%	
 379	
 26%	

X	
 4,483	
 55%	
 4,768	
 51%	

Y	
 6,747	
 43%	
 7,628	
 46%	

Z	
 2,450	
 56%	
 2,505	
 56%	

Clones had increased
during combined testing	

Scatter Plot (Company Y)�

A	

B	

C	

D	

E	

after unit testing	

af
te

r u
ni

t t
es

tin
g	

after combined testing	

af
te

r c
om

bi
ne

d
te

st
in

g	
 The parts D and E imply the creation of
clones after the unit testing. 	

The developers insist
that they added trusted
library that has used in

many products.	

Interview	

Scatter Plot (Company Y)�

A	

B	

C	

D	

E	

after unit testing	

af
te

r u
ni

t t
es

tin
g	

after combined testing	

af
te

r c
om

bi
ne

d
te

st
in

g	

 The part A treats geographical information of
several types of vehicles. The code for the
types are mostly cloned.	

 The part B involves statements
for building SQL queries.	

The part C involves initialization and
finalization for a certain feature.	

Example of detected clone
Clone metrics-based analysis �

}  Longest clones
}  A pair of 154 lines clones between the two files
}  Implications of copy-and-paste and forgetting modification

AAXXBB.cpp	
 AAYYBB.cpp	

/* ...XX.. *//	
 /* ..XX.. *//	

void …XX…()	
 void …XX…()	

Implication of
forgetting

modification to
YY	

	

Implication
of forgetting
modification

to YY	

	

Example of detected clones
File metrics-based analysis �

}  Source file containing the maximum number of clones

…
	

358 clones	

}  Most duplicated pair of source files
96% tokens are

duplicated	

Developers had expected this duplication since design phase.	

Interview	

Summary & Future work �

}  Summary	

}  Discussed the importance of sharing industrial
experiences with clone analysis

}  Presented industrial application of clone analysis
}  Many characteristic clones were extracted
}  According to interviews for some of the extracted clones, the

developers expected the existence of clones.

}  Future work
}  Conduct the further analysis for determining whether

harmful clones or not

