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Abstract—Merging similar programs is a promising solution
to improve the maintainability of source code. Before merging
programs, any syntactic difference has to be extracted as a new
method. However, it is difficult for a developer to identify and
extract differences from programs appropriately because he/she
has to consider not only syntactic and semantic correctness but
also the modularity of the programs after merging. In this paper,
we propose a slice-based cohesion metrics approach to suggesting
the extractions of differences from similar Java methods. This
approach identifies syntactic differences from two methods, and
then suggests sets of cohesive regions including those differences.
The case study shows that the proposed approach can suggest
refactorings that not only merge two methods but also increase
the cohesiveness.

I. INTRODUCTION

A method in source code often has one or more similar
methods to it in the source code[1][2]. Merging similar meth-
ods is one of refactoring activities to improve the maintain-
ability of source code[3].

Fig. 1 illustrates merging of similar methods. In merging
similar methods, developers decompose them into multiple
new methods, each of which represents the common or the
different parts of the similar methods. “Form template method”
refactoring is a repeated solution to merge similar methods[3].
During the decomposition of similar methods, developers
have to consider the cohesiveness of new methods extracted
from the similar methods (see step(2) in Fig. 1) because
cohesiveness is a main factor of the maintainability of source
code [4].

Refactoring support to recommend code transformations is
needed for developers who merge similar methods because it
is difficult to identify and extract cohesive fragments simul-
taneously as new methods from similar methods. A method
extraction in one of similar methods should be simultaneously
performed with the corresponding method extraction in the
other similar method.

So far, several approaches have been proposed on refactor-
ing of similar methods. Those existing approaches [5], [6],
[7] provide the locations of similar methods, or the identi-
fication of the differences between them, however, and little
consideration for the cohesiveness of new methods extracted
from similar methods. Therefore, it is difficult for developers
to identify code transformations to improve the maintainability
of the source code.
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Fig. 1. Decomposition of similar methods

In this paper, we propose a cohesion metric approach to
recommending and ranking method extractions for merging
similar methods (Fig.2). This approach aimed to help devel-
opers who transform similar methods into cohesive methods
desired for understanding and maintaining source code. At
first, the proposed approach accepts a pair of similar methods,
and then detects syntactic differences between them. After that,
“Extract method (EM)” candidate sets are identified, each of
which extracts cohesive methods including all of the syntactic
differences. Finally, EM candidate sets are ranked according
to cohesiveness.

Also, we have developed a tool for the identification and
cohesion-based ranking of method extractions for merging
similar methods (see Fig.9), and then conducted a case study
of a pair of similar methods in an open source software
system Ant 1.7.0. The result indicate the proposed approach
is promissing to suggest refactorings that not only preserve
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Fig. 2. Overview of the proposed approach

external behavior but also increase the cohesiveness of related
source code.

The contributions of this study are as follows:
• To help developers who merge similar methods, we

propose an approach to differentiating a given pair of
methods in source code, and ranking differences accord-
ing to each of cohesion metrics for code fragments.

• As a case study, we applied the proposed approach into
a pair of similar methods in an open source software
system. The result shows that the proposed approach in-
creased two out of the three slice-based cohesion metrics.

II. IDENTIFYING EXTRACT METHOD CANDIDATES

In this section, we propose an approach to identifying “Ex-
tract Method”(EM) candidates for merging similar methods.

The identification of “Extract Method” candidates is com-
prised of the following three steps:

1) Build Abstract Syntax Trees (ASTs) of a given pair of
similar methods

2) Detect differences from the ASTs
3) Identify cohesive code fragments as EM candidates, each

of which includes at least one detected difference
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Fig. 3. An example of building an AST in this paper (Each number is assigned
to SNs in the same order as breadth-first traversal starting with a root)

A code fragment is denoted as 5-tuples (ID, SL, SC, EL,
EC) where ID denotes unique number of a given source file,
SL denotes start line, SC denotes start column, EL denotes end
line, and EC denotes end column.

A. Building ASTs

We build a pair of ASTs corresponding to a given pair
of similar methods (MA, MB) using Eclipse JDT1. Fig.3
illustrates an example of a part of an AST. Please note that
we denote a node that represents a statement in source code
as Statement Node (SN), and each number is assigned to SNs
in the same order as breadth-first traversal starting with a root.

B. AST Differencing

The AST differecing in the proposed approach performs
statement-level differentiation because it is aimed at finding
code fragments for ‘Extract method’ refactoring. The result of
token-level differentiation [5] sometimes includes small-scale
differences that are less-attractive for method extraction.
Step 1: Node-level differencing of a pair of ASTs

The differentiation between a pair of ASTs as shown in
Algorithm 1. In the case of the comparison between two
nodes that represent block statements including multiple child
nodes, The DPMatching(NA,NB) function is invoked for
the determination of correspondence between child nodes in
the two nodes. The detemination is performed by dynamic
programming-based approximate string matching [8].
Step 2: Identifying subtrees including node-level differ-
ences

This step identifies subtrees, each of which includes at least
one node-level difference determined in Step 1, and derives
the most minimum (deepest) subtree including each node-level
difference. The traversal starts with each δ in the all of the

1http://www.eclipse.org/jdt/index.php
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Pair of similar methods

price = getFoodPrice();

price = price * 1.05;

・
・
・

・
・
・

price = getDrinkPrice();

price = price * 1.1;

・
・
・

・
・
・

Step 2: Identifying subtrees including

node-level differences

price = getFoodPrice();

price = price * 1.05;

・
・
・

・
・
・

price = getDrinkPrice();

price = price * 1.1;

・
・
・

・
・
・

Step 1: Node-level differencing a pair of ASTs
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Fig. 4. Detecting syntactical-diffrences between a pair of similar methods

Algorithm 1 comparison(NA, NB)

input:NA and NB are node of ASTs of MA and MB

output: Sets of different nodes ∆A and ∆B

if NA.label 6= NB .label then
∆A ← NA

∆B ← NB

else
if NA.label == Block then
DPMatching(NA, NB)

else
if NA.childNum == NB .childNum then

for i = 0 to i = NA.childNum do
comparison(NA.child[i], NB .child[i])

end for
else
∆A ← NA

∆B ← NB

end if
end if

end if

node-level differences identified in Step 1, and then finds the
nearest parent node that represents a Statement Node (SN).
When the root of a subtree is the nearest parent node, this
subtree is identified as the subtree including δ. Hereafter, sAi ∈
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Fig. 5. Detecting different statements

SA and sBi ∈ SB denote two subtrees including differences
δAi ∈ ∆A and δBi ∈ ∆B respectively, where ∆A and ∆B

denote the two sets of node-level differences between the MA

and MB .

C. Detecting code fragments for Extract method refactoring

We explain definitions of preconditions of the Extract
method refactoring (Definition 3.2) and the Extract method
candidates for merging similar methods (Definition 3.3).

Definition 3.2 (Preconditions of the Extract method refac-
toring) Murphy-hill et al. defined three preconditions of the
Extract method refactoring [9].

1) Condition 1 Within the selection, there must be no
assignments to variables that might be used later in the
flow of execution. For Java, this can be relaxed to allow
assignment to one variable, the value of which can be
returned from the new method.

2) Condition 2 Within the selection, there must be no
conditional returns. In other words, the code in the
selection must either always return, or always flow
beginning to end.

3) Condition 3 Within the selection, there must be no
branches to code outside of the selection. For Java,
this means no break or continue statements, unless the
selection also contains their corresponding targets.

Definition 3.3 (The Extract method candidates for merging
similar methods (EM candidates)) EM candidates are de-
fined as a pair of two sets of code fragments C = (EA, EB),
EA and EB are two sets of code fragments involved in the
pair of similar methods (MA, MB). Each code fragment in
the EA and EB must satisfy the following four conditions:

1) Condition A Each code fragment in the EA and the EB

can be refactored (i.e., for every code fragment in the
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EA and the EB satisfies the Conditions 1, 2, and 3 in
Definition 3.2)

2) Condition B After each code fragment in the EA and
the EB is extracted for refactoring, the old method
remaining token sequences of M1 and M2 are exactly
same.

3) Condition C Token sequences of any code fragments
eAi, eAj ∈ EA(i 6= j) are not overlapped, and also token
sequences of any code fragments eBi, eBj ∈ EB(i 6= j)
are not overlapped.

4) Condition D For all fAi ∈ FA, the eAj exists in EA

that include fAi, and also for all fBi ∈ FB , the eBj

exists in EB that include fBi.

Fig.6 shows an example of an EM candidate. In this figure,
the differences between the MA and MB are emphasized by
the bold font. The EA and EB are highlighted with colors.

We explain the steps of enumerating all of EM candidates
from a given pair of methods. The enumeration starts with the
two sets of subtrees SA and SB derived from the MA and
MB respectively, and then finds the all of EM candidates that
satisfy the four conditions in Definition 3.3.

Let us assume that a set of subtree ES initialized with {s1},
a first element of a set of subtree SA (i.e. a subtree that
corresponds to the code fragment cf ). Also, the maximum
and minimum numbers of root (SNs) of each subtree in ES is
defined as imax and imin, respectively. The detailed steps of
the enumeration are as follows:

1) Step C.1: In this step, a subtree is added to a set ES
when the root of the subtree is SN and satisfies the
following conditions: (1) An assigned number of the SN
is imax+1 or imin−1 (2)the SN and a root of a subtree
in the ES are sibilng nodes. This step is illustrated in the
left part of the Fig.7.

2) Step C.2: This step is illustrated in the right part of the
Fig.7. The traversal starts with the root of each subtree
in the ES. When the nearest parent node that represents
a SN is found, all of the subtrees in ES are removed. A
subtree having SN as root is added to ES, and then the
enumeration goes back to the Step C.1.
On the other hand, when the nearest parent node that
represents a SN is not found until reaching the root, this
step is over.

III. RANKING EM CANDIDATES

Developers need much effort to choose refactoring candi-
dates if a large number of refactoring candidates are detected.
Therefore, in our approach, detected refactoring candidates
are ranked based on slice-based cohesion metrics. In general,
cohesion is a measure which expresses, in order for each of the
constituent parts within a module to realise a specific feature,
the extent to which they work together [4]. The cohesion takes
a high value for a module which implements a single feature,
and conversely, a low value if it implements multiple features
which are not related.
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Fig. 7. Steps of extending nodes

We consider that each extracted method should have high
cohesion. Therefore, slice-based cohesion metrics are used for
ranking EM candidates in our approach.

A. Slice-Based Cohesion Metrics

At first, we explain Program Dependence Graph (PDG)
and program slicing. PDG is a directed graph consisted of
the vertices representing statements in a program and the
edges representing dependences between the statements [10].
Program slicing is a technique to extract a set of statements
related to a slicing criterion using PDG. A slicing criterion is
tuple of a statement and a variable.

Weiser proposed five metrics based on program slicing
to measure program cohesion [11]. Furthermore, Ott et al.
showed the effectiveness of Tightness, Coverage, and Overlap
in the metrics proposed by Weiser [12]. These three slice-based
metrics are used with a little modification for our approach.

Slice-based cohesion metrics used in proposed approach are
defined as follows: Let M be a method, len(M) is the number
of statements in the M, Vi is a set of argument variables in the
M, Vo is a set of output variables in the M, V is a union of Vi

and Vo, FSLx is a program slice that is calculated based on
variable x using forward slicing, BSLx is a program slice that
is calculated based on variable x using backward slicing, and
SLint is an intersection of FSLx, x ∈ Vi and BSLx, x ∈ Vo.

FTightness(M) =
|SLint|
len(M)

FCoverage(M) =
1

|V | (
∑
x∈Vi

|FSLx|
len(M)

+
∑
x∈Vo

|BSLx|
len(M)

)

FOverlap(M) =
1

|V | (
∑
x∈Vi

|SLint|
|FSLx| +

∑
x∈Vo

|SLint|
|BSLx| )

Fig.8 shows an example of computing of slice-based cohe-
sion metrics. In this figure, a vertical bar represents that a state-
ment is involved in a program slice, and FTightness = 0.500,
FCoverage = 0.722 and FOverlap = 0.750.
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public PlanarImage executeDrawOperation() {

BufferedImage bi = new BufferedImage(width, height,

BufferedImage.TYPE_4BYTE_ABGR_PRE);

Graphics2D graphics = (Graphics2D) bi.getGraphics();

if (!stroke.equals("transparent")) {

BasicStroke bStroke = new BasicStroke(stroke_width);

graphics.setColor(ColorMapper.getColorByName(stroke));

graphics.setStroke(bStroke);

graphics.draw(new Ellipse2D.Double(0, 0, width, height));

}

if (!fill.equals("transparent")) {

graphics.setColor(ColorMapper.getColorByName(fill));

graphics.fill(new Ellipse2D.Double(0, 0, width, height));

}

public PlanarImage executeDrawOperation() {

BufferedImage bi = new BufferedImage(width + (stroke_width * 2),

height + (stroke_width * 2), BufferedImage.TYPE_4BYTE_ABGR_PRE);

Graphics2D graphics = (Graphics2D) bi.getGraphics();

if (!stroke.equals("transparent")) {

BasicStroke bStroke = new BasicStroke(stroke_width);

graphics.setColor(ColorMapper.getColorByName(stroke));

graphics.setStroke(bStroke);

graphics.draw(new Arc2D.Double(stroke_width, stroke_width, width,

height, start, stop, type));

}

if (!fill.equals("transparent")) {

graphics.setColor(ColorMapper.getColorByName(fill));

graphics.fill(new Arc2D.Double(stroke_width, stroke_width,

width, height, start, stop, type));

}
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Fig. 6. An example of an EM candidate

int permutation(int a, int b) {

int i;

int res = 1;

for (i = 0; i < b; i++) {

res = res * a;

a = a – 1;

}

return res;

}
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Fig. 8. Computing of slice-based metrics

B. Computing Cohesion for EM candidates

Cohesion of an EM candidate C = (EA, EB) is defined
as an average value of cohesion metrics of code fragments
eAi ∈ EA and eBi ∈ EB . Its cohesion is computed using
slice-based metrics explained above. Detected EM candidates
are ranked according to each metric respectively. As a result,
three types of rankings are generated according to FTightness,
FCoverage, and FOverlap.

IV. IMPLEMENTATION

The proposed approach is implemented as an Eclipse plugin.
Building ASTs and checking whether a code fragment can be
extracted as a method are implemented using Eclipse JDT.
PDGs of a pair of similar methods are built by source code
analysis tool, MASU [13]. A screenshot of implemented tool
is shown in Fig.9. In this figure, a pair of similar methods
are shown in both the left part and the right part. One of tabs
in the upper part corresponds to an EM candidate. Each code
fragment highlighted by colors can be extracted as a primitive
method. A metric for ranking EM candidates can be chosen
by the lower part buttons.

The similar methods in Fig.9 realize the rendering of a
diagram. The red part realizes the allocation of a buffer, the
green part realizes the rendering of the outline of the diagram,
and the yellow part realizes the painting of the diagram. Each
of the red, green, and yellow parts has high cohesion because
each code fragment corresponds to a single functionality.

V. CASE STUDY

As a case study, we applied the implemented tool into a
pair of methods in an open source software Ant 2. The names
of the the two methods are the same executeDrawOperation()
(see the methods in Fig. 9). Each of the two methods belong
to the classes Arc and Ellipse in Ant, respectively.

The case study was aimed at confirming the changes of the
slice-based cohesion metrics Tightness, Coverage, and Overlap
[12] before and after “Form Template Method” refactoring
using the implmented tool.

The implmented tool derived 34 sets of extract method(EM)
candidates from Ant. We selected each top 10 sets of EM can-
didates (TOP10) from FTightness, FCoverage, and FOverlap
rankings, respectively. As a result, the TOP10 from FTightness
ranking is the same as FCoverage ranking.

And then we calculated the slice-based cohesion metrics
Tightness, Coverage, and Overlap before and after refactoring
using the implemented tool. Each refactoring extracted EM
candidates in one of the TOP10s manually. The first author
performed all of the refactorings.

Before refactoring, each of cohesion metrics Tightness, Cov-
erage, and Overlap was completely the same value between
the two methods executeDrawOperation() in the classes Arc
and Ellipse. The cohesion metrics Tightness, Coverage, and
Overlap were 0.4, 0,4 and 1.0, respectively.

2http://ant.apache.org/
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Fig. 9. A screenshot of the implemented tool

TABLE I
INCREASE RATE OF SLICE-BASED COHESION METRICS OF METHODS BETWEEN BEFORE AND AFTER REFACTORING

Tightness Coverage Overlap
average maximum minimum average maximum minimum average maximum minimum

FTightness 22% 54% 5% 22% 54% 5% 0% 0% 0%
FCoverage 17% 25% 5% 17% 25% 5% 0% 0% 0%
FOverlap 22% 54% 5% 22% 54% 5% 0% 0% 0%

A. Result

Table I shows the increase rate of the cohesion metrics
Tightness, Coverage, and Overlap of the methods (i.e., two
executeDrawOperation() methods in Arc and Ellipse classes)
between before and after refactoring. The leftmost column
indicates that what kind of cohesion metrics was selected
for ranking EM candidates from FTightness, FCoverage, and
FOverlap. The “average”, the “maximum” and the “minimum”
in the table indicate the average, the maximum, and the
minimum cohesion metric between each TOP 10, respectively.

In any case of TOP10 according to FTightness, FCoverage,
and FOverlap, each of Tightness and Coverage always in-
creased by extracting all of EM candidates in the set. Firstly,in
the cases of FTightness and FOverlap, the average, the maxi-
mum, and the minimum increases of Tightness, Coverage were
22%, 54%, and 5%, respectively. Secondly, in the case of
FConverage, average, maximum, and minimum increases of
Tightness, Coverage were 17%, 25%, and 5%, respectively.
Finally, in any case of FTightness, FConverage and FOverlap,
Overlap metric was always unchanged from 1.0 after any
refactoring in each TOP10.

For behavioral preservation, we confirmed that the results
of all JUnit test suites in Ant are unaltered before and after
all of the refactorings.

B. Discussion

According the result of the case study, the proposed ap-
proach with a TOP10 based on each of FTightness, FCover-
age, and FOverlap can increase slice-based cohesion metrics
Tightness, Coverage. Especially, the TOP10s based on FTight-
ness and FCoverage lead higher increase rate. Overlap was
unchanged in any case because the value was 1.0 before each
refactoring.

Using JUnit test suites in Ant, we confirmed that the
proposed approach is promissing to support refactoring that
preserves the external behavior of the programs.

In the case study, we applied the proposed approach into
only a pair of programs. The further case studies are needed
to generalize the discussion.

VI. RELATED WORK

Juillerat et al. proposed an approach to automating Form
Template Method refactoring (FTM) [5]. In this approach,
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differences between a pair of similar methods are detected
using ASTs, and then a code fragment corresponding to a
subtree including the difference between a pair of similar
methods is extracted as a primitive method. However, unlike
the approach proposed in this paper, such kind of automatically
determined code fragments do not necessarily have a single
functionality. In addition, developers are able to select a
candidate of FTM in the approach that we have proposed.

Hotta et al. proposed an approach that detecting FTM
candidates [6]. In our approach, FTM candidates are ranked
by slice-based cohesion metrics. By contrast, in the Hotta’s
approach, FTM candidates are only detected and presented to
developers. Therefore, our approach is more effective when a
large number of FTM candidates are detected.

Wang et al. proposed an approach that automatically divides
a method into meaningful blocks based on data flows, control
flows and syntax information [14]. In our approach, cohesion
of a code fragment is measured using slice-based cohesion
metrics. This is based on data dependence and control depen-
dence of PDG. Using syntax information, we can improve the
ranking algorithm in our approach.

VII. SUMMARY

In this paper, we proposed a cohesion metric approach to
recommending and ranking method extractions for merging
similar methods. This approach aimed to help developers who
transform similar methods into cohesive methods desired for
understanding and maintaining source code. Also, we have
developed a tool for the identification and cohesion-based
ranking of method extractions for merging similar methods. As
a case study, we applied the actual pair of similar methods in
Ant 1.7.0. The result indicates that the proposed approach can
suggest refactorings that not only preserve external behavior
but also increase two (i.e., Tightness and Coverage) out of the
three slice-based cohesion metrics.

As future work, we should conduct larger case studies to
show the usefulness of the proposed approach. As a case study,

we plan to ask developers to vote refactoring suggested by the
proposed approach, and confirm the relationship between the
voting result and the cohesion metrics-based ranking derived
by the proposed approach. Also, we are interested in knowing
how close the recommendations of the proposed approach are
to refactoring instances during actual software development.
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