
Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

ACTIVE SUPPORT
FOR CLONE REFACTORING:
A PERSPECTIVE	

Norihiro Yoshida (Nara Institute of Science and Technology)
Eunjong Choi (Osaka University)
Katsuro Inoue (Osaka University)

1

Outline	

• Clone and its refactoring

• Previous research
•  Industrial experience in active clone refactoring

• Research proposal
• Plan towards proactive support for clone refactoring

• Summary	

2

What is Code Clone ?	

A code fragment that has similar or
identical part in source code	

3

Code Clone	

Bug is
found	
 Necessary

to inspect
them

Necessary
to inspect

them

If we modify one of them, it is necessary to determine
whether or not we have to modify the others.

Clone Refactoring	

Merging clones into a single program unit.

4

Remove
Code Clones	

call	

Merging	

Old Version New Version

Clone Detection Tool : CCFinder [1]	

• A token-based clone detection tool

•  Transform source code into sequence of tokens
• Detect identical parts of the sequence as code clones

• Scalable and accurate

5

Input	
 Output	

Source Files Location Information
of Code Clone CCFinder

[1] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A multilinguistic token-based code clone detection
system for large scale source code”, IEEE Transactions on Software Engineering, 28(7):654-670, 2002.

Industrial Experience in Clone Analysis	

• Only hot clones can be refactored.

•  Strike while the iron is hot!

•  In industry, cost of clone refactoring cannot be ignored.

•  Regression test after refactoring takes much cost to preserve
behavior after refactoring.

•  Industrial developers do not touch source code after large-scale
system test for releasing major version.

6

Active support of clone refactoring is needed
to notify newly-appeared clones regularly to developers.	

Clone Notifier :
A Clone Change Management System [2]	

7

Developer	

Version Control
System

Commit
source code	

Checkout
source code	

Report clone evolution information
•  E-mail notification
•  Web-based UI	

Clone Notifier

Identification of
Clone Evolution	

[2] Yamanaka, et al.: "Applying Clone Change Notification System into an Industrial
Development Process", ICPC 2013.	

Applying to Industrial Process	

• Applied Clone Notifier to development process in NEC
•  6 programmers, 120 KLOC written in Java

• Got regular feedbacks from a project manager

8

Clone Notifier

Daily Report	

Questionnaire	

Feedback	

Project

manager
Our group

10 sets of code clones were recognized
as refactoring opportunities in 40 days.	

Towards More Active Support	

• Related Work: Proactive Support for Refactoring

•  Benefactor[2] and WitichDoctor[3] detect the beginning of
refactoring, and recommend code transformations to complete it.

•  In the case of clone refactoring, existing tools
lacks proactive support
•  There is no tool that supports clone refactoring based on the online

analysis of code modification.

9

[3] Foster et al: WitchDoctor: IDE Support for Real-Time Auto-Completion
of Refactorings, ICSE 2012.
[4] Ge et al: Reconciling manual and automatic refactoring, ICSE 2012.	

Proactive Refactoring Candidate Detection
Overview	

• We plan to develop an Eclipse plug-in for proactive

refactoring candidate detection.
•  The detection is based on the online analysis of code modification.

10

Online detection of
refactorings	

Code modification
for refactoring	

Inference of clone
refactoring
candidates	

clone refactorings
candidates

developer	

Proactive Candidate Detection for Clone Refactoring
Key Idea	

When a developer refactors a code fragment, he/she has to
consider to refactor the clones of the code fragment.

11

Clone	

Clone	

Clone	

New method	

Extract Method

Developer	

	

	

Also consider to perform
Extract Method

If IDE catches the beginning of clone refactoring,
it can proactively recommend clones to be refactored at once.

Proactive Candidate Detection for Clone Refactoring
Step1: Refactoring detection	

12

Developer	

Clone	

Clone	

Clone	

New method	

Once he extracts
a clone as a new
method …

Tool detects the beginning
of the refactoring

Tool	

Proactive Candidate Detection for Clone Refactoring
Step2: Clone detection	

13

Clone	

Clone	

Clone	

New method	

Tool	

Tool identifies
the corresponding clones.

Proactive Candidate Detection for Clone Refactoring
Step3: Recommendation of refactoring candidates	

14

Clone	

Clone	

Clone	

New method	

Tool	

Tool recommends to
merge those clones into
the new method.

Other Challenges for Proactive Support
for Clone Refactoring	

• Near real time clone detection

•  Invoked by modification in a source code editor
•  Finish the detection by the timing of next modification.

• Precise detection of refactoring candidate selection
• Clones are not always refactoring candidates

•  Syntactically incomplete clone
•  Clone accidentally created by only the replacement of statements.

• Discovering further heuristics is needed for eliminating
clones that should not be detected.

15

Summary	

• We discussed active and proactive support
for clone refactoring
•  Industrial experience in active support for clone

refactoring

• Plan for developing tool that supports clone refactoring
proactively

• Currently, we are developing a prototype tool that
supports clone refactoring proactively.

16

