
Electronic Communications of the EASST
Volume 63 (2014)

Proceedings of the
Eighth International Workshop on

Software Clones
(IWSC 2014)

How We Know the Practical Impact of Clone Analysis

— Position Paper —

Norihiro Yoshida, Eunjong Choi , Yuki Yamanaka , Katsuro Inoue

5 pages

Guest Editors: Nils Göde, Yoshiki Higo, Rainer Koschke
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

How We Know the Practical Impact of Clone Analysis

Norihiro Yoshida1, Eunjong Choi 2, Yuki Yamanaka 2, Katsuro Inoue 2

1 yoshida@is.naist.jp
Graduate School of Information Science

Nara Institute of Science and Technology, Japan

2 ejchoi, y-yuuki, inoue@ist.osaka-u.ac.jp
Graduate School of Information Science and Technology

Osaka University, Japan

Abstract: In order to develop and improve clone analysis techniques for industrial
application, it is necessary to know about how those techniques provide impacts
on clone management in industry. In this position paper, we discuss approaches to
observing the practical impact of clone analysis on the basis of our experience in
applying clone analysis into an industrial development process.

Keywords: Clone management, Industrial experience, Refactoring

1 Introduction

The impact of software analytics is generating a lot of discussions in the software engineer-
ing community [NII13, MZ13b, MZ13a]. Although a lot of techniques have been proposed on
software analytics so far, how those techniques provide positive impacts isstill unclear.

The clone research community has provided a greater number of industrial case studies on
clone analysis techniques compared to other analytics research fields [JDHW09, HG13, YHKI12].
However, most of those studies simply applied clone analysis techniques to industrial source
code, and only a few studies have been done on the application of those techniques into an in-
dustrial development process. It is clearly difficult to confirm the practical impact of applying
clone analysis techniques without any application of those techniques into anindustrial devel-
opment process. Mining Software Repositories (MSR) allows researchers to know the evolution
of code clones in version archives[KSNM05, GK11, SRS13]. However, it does not tell them
whether or not the evolution was intentionally achieved by a developer who was inspired by the
result of clone analysis. For example, MSR is insufficient to distinguish whether clone analysis
techniques helped a developer to notice code clones to be maintained or the developer noticed
them without any clone analysis technique.

In this position paper, we introduce our experience in observing the practical impact of clone
analysis during the application of the analysis into a development process in NEC Corporation.
During the application, we successfully confirmed that our clone change management system
helped a project manager to notice newly-appeared code clones to be maintained. Then, we
discuss future challenges for observing the practical impact.

1 / 5 Volume 63 (2014)

mailto:yoshida@is.naist.jp
mailto:{ejchoi, y-yuuki, inoue}@ist.osaka-u.ac.jp


How We Know the Practical Impact of Clone Analysis

Developer

Version Control 
System

Commit 
source code

Checkout
source code

Report clone evolution information
• E-mail notification
• Web-based UI

Clone Notifier

Figure 1: An Overview of Clone Notifier

Clone Notifier

Report
Questionnaire

Feedback
Project 

manager
Our group

Figure 2: An Overview of the Case Study

2 Industrial Experience with Clone Change Notification System

In this section, we introduce the experience with 40-day application of CloneNotifier [YCY+13]
into a development process in NEC Corporation. Figure1 shows an overview of Clone Notifier.
It is a clone change notification system for notifying creation and change of code clones. It
regularly identifies newly-appeared and changed clones by analyzing SVN commits and using
CCFinder[KKI02], and then notifies them to developers by e-mail and a web-based UI. We used
the default setting of CCFinder. In the default setting, the minimum token length of the detected
code clones is 30.

The target system consists of approximately 350 files and 12 KLOC written in Java. The
duration of the application was about 40 days, from December 2011 to January 2012.

To observe the practical impact of the clone analysis technique, we used questionnaires to the
project manager of the development team. Figure2 shows an overview of the questionnaires. At
first, we asked him whether he discovered at least one unintentionally-developed clone, and then
asked him how the development team should maintain the unintentionally-developed clone. We
showed three options for the second question (i.e., refactoring, write a source code comment to
denote the existence of the clone, leave the clone as it is).

Proc. IWSC 2014 2 / 5



ECEASST

2.1 Application result

During 40 days application, Clone Notifier notified overall 119 newly-appeared clone sets. Be-
tween 119 clone set of newly-appeared clone set, the project manager recognized 10 clone sets
as clone sets should be refactored, and a clone set should be noted in a source code comment.

In the questionnaires, he told us that his criteria whether or not a newly-appeared clone set
should be maintained (i.e., refactored, noted) are the amount of code clones that can be reduced
in the clone set and the possibility of editing the clone set in the future maintenance, and the
criterion whether a newly-appeared clone set should be refactored ornoted is the cost of refac-
toring. The noted clone set includes a number of the name differences between code clones.
Therefore, he regarded merging those differences and performing atest to verify the merging as
time-consuming task.

Two of the ten clone sets was merged into a single function during the 40 days,respectively.
The other eight clone sets were designated as refactoring candidates that will be merged during
next maintenance project.

2.2 Manual observation of newly-appeared clone sets

As an ex-post analysis, we investigated the characteristics of clone sets recognized as refactoring
candidates by the experienced project manager at NEC. The aim of the analysis is data collec-
tion for the development of a technique to recommend refactoring candidatesfrom all newly-
appeared and changed clones. The recommendation is able to help developers to reduce the cost
of finding clone sets should be merged into a single module.

We manually checked the differences between the 10 clone sets should be merged and the
other 109 clone sets. As a result, we learned interesting insights about the clone sets that should
be merged.

2.2.1 Code clones Introduced without code addition

As the first insight, in the case of clone sets that were newly-appeared byadding new code, the
project manager frequently recognized them as ones should be merged.On the other hand, clone
sets were sometimes accidentally created by only the replacement or the deletionof statements.
In other words, even if no line is added to a code fragment, it sometimes becamea code clone
in a clone set together with other code fragments when at least one character is changed in it. In
such case, the project manager mostly decided to leave those duplicates as itis.

From our observation of the 119 clone sets, we found that only coding idioms (e.g., program-
ming or API/library specific idioms) are involved in clone sets that were newly-appeared by only
the replacement or the deletion of statements. Basically, such idioms are difficult to merge or
have an overall positive effect on maintenance and development [KG06, KG08] therefore they
should be eliminated from refactoring candidates.

According to this observation, we eliminated clone sets that were newly-appeared by only
the replacement or the deletion of statements from the 119 clone sets. The result shows that
the elimination not only left the all of clone sets that should be refactored butalso reduced the
number of the number of 119 newly-appeared clone sets by approximately 86%(16/119).

3 / 5 Volume 63 (2014)



How We Know the Practical Impact of Clone Analysis

2.2.2 Syntactically incomplete clone sets

As the second insight, code sets include whole parts of loop or branch statements were considered
as ones should be merged. Meanwhile, the project manager rarely recognized clone sets include
only parts of loop or branch statements as ones should be merged becauseit is difficult to merge
syntactically incomplete clone sets.

According to this observation, we eliminated syntactically incomplete clone sets from the
119 clone sets. The result shows that the elimination not only left the all of clone sets should
be refactored but also reduced the number of 119 newly-appeared clone sets by approximately
90%(12/119). Note that this does not include the previous reduction.

3 Challenges

In this section, we discuss future challenges for observing the practicalimpact of clone analysis.
At first, the clone research community should develop a collection of common and disci-

plined approaches for the observation to share and generalize study results presented by different
researchers. We believe that our industrial experience introduced in Section 2 can be a good
starting point to discuss a collection of common and disciplined approaches for the observation.

Secondly, it is strongly needed to apply various kinds of clone analysis techniques into indus-
trial development processes because it is promising to give a clue to the development of clone
analysis techniques. As introduced in Section 2, applying clone analysis intodevelopment pro-
cess tells us what kinds of clones should be notified to developers for what kinds of maintenance
activities. For example, the industrial case study in Section 2 tells us newly-appeared clones
should be notified to developers who perform refactoring.

Finally, it is also important for the improvement of clone analysis techniques to perform ex-
post analysis after the application of those techniques into development process. As introduced in
Section 2, our ex-post analysis tells us that more sophisticated techniques are needed for efficient
clone notification.

Acknowledgements: This work was supported by JSPS KAKENHI Grant Numbers 25220003,
21240002.

Bibliography

[GK11] N. Göde, R. Koschke. Frequency and Risks of Changes to Clones. InProceedings
of the 33rd International Conference on Software Engineering. ICSE ’11, pp. 311–
320. ACM, New York, NY, USA, 2011.
doi:10.1145/1985793.1985836
http://doi.acm.org/10.1145/1985793.1985836

[HG13] J. Harder, N. Gde. Cloned code: stable code.Journal of Software: Evolution and
Process25(10):1063–1088, 2013.

Proc. IWSC 2014 4 / 5

http://dx.doi.org/10.1145/1985793.1985836
http://doi.acm.org/10.1145/1985793.1985836


ECEASST

doi:10.1002/smr.1551
http://dx.doi.org/10.1002/smr.1551

[JDHW09] E. Juergens, F. Deissenboeck, B. Hummel, S. Wagner. Do code clones matter? In
Proc. of ICSE. Pp. 485–495. 2009.

[KG06] C. Kapser, M. W. Godfrey. ”Cloning Considered Harmful” Considered Harmful. In
WCRE. Pp. 19–28. 2006.

[KG08] C. J. Kapser, M. W. Godfrey. ”Cloning considered harmful” considered harmful:
patterns of cloning in software.Empir Software Eng13(6):645–692, 2008.

[KKI02] T. Kamiya, S. Kusumoto, K. Inoue. CCFinder: a Multilinguistic Token-Based Code
Clone Detection System for Large Scale Source Code.IEEE Trans. Softw. Eng.
28(1):654–670, 2002.

[KSNM05] M. Kim, V. Sazawal, D. Notkin, G. C. Murphy. An empirical studyof code clone
genealogies. InProc. of ESEC/FSE. Pp. 187–196. 2005.

[MZ13a] T. Menzies, T. Zimmermann. The Many Faces of Software Analytics.IEEE Software
30(5):28–29, 2013.
doi:http://doi.ieeecomputersociety.org/10.1109/MS.2013.114

[MZ13b] T. Menzies, T. Zimmermann. Software Analytics: So What?IEEE Software
30(4):31–37, 2013.
doi:http://doi.ieeecomputersociety.org/10.1109/MS.2013.86

[NII13] NII Shonan Meeting on Software Analytics: Principles and Practice. 2013.
http://www.nii.ac.jp/shonan/blog/2012/11/19/software-analytics-principles-and-practice/

[SRS13] R. K. Saha, C. K. Roy, K. A. Schneider. gCad: A Near-MissClone Genealogy
Extractor to Support Clone Evolution Analysis. InSoftware Maintenance (ICSM),
2013 29th IEEE International Conference on. Pp. 488–491. 2013.
doi:10.1109/ICSM.2013.79

[YCY+13] Y. Yamanaka, E. Choi, N. Yoshida, K. Inoue, T. Sano. Applying Clone Change
Notification System into an Industrial Development Process. InICPC. Pp. 199–206.
2013.

[YHKI12] N. Yoshida, Y. Higo, S. Kusumoto, K. Inoue. An ExperienceReport on Analyzing
Industrial Software Systems Using Code Clone Detection Techniques. InSoftware
Engineering Conference (APSEC), 2012 19th Asia-Pacific. Volume 1, pp. 310–313.
2012.
doi:10.1109/APSEC.2012.98

5 / 5 Volume 63 (2014)

http://dx.doi.org/10.1002/smr.1551
http://dx.doi.org/10.1002/smr.1551
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MS.2013.114
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MS.2013.86
http://www.nii.ac.jp/shonan/blog/2012/11/19/software-analytics-principles-and-practice/
http://dx.doi.org/10.1109/ICSM.2013.79
http://dx.doi.org/10.1109/APSEC.2012.98

	Introduction
	Industrial Experience with Clone Change Notification System
	Application result
	Manual observation of newly-appeared clone sets
	Code clones Introduced without code addition
	Syntactically incomplete clone sets


	Challenges

