Improving Code Review Effectiveness through Reviewer Recommendations

Patanamon Thongtanunam^{*} and

Raula Gaikovina Kula[†], Ana Erika Camargo Cruz^{*}, Norihiro Yoshida^{*}, Hajimu Iida^{*}

*Nara Institute of Science and Technology (NAIST)

[†]Osaka University, Japan

Introduction

- **Code Review** : A source code inspection performed by developers other than the author
 - Supported Tools: Gerrit, ReviewBoad, etc.
 - A patch reviewed by <u>developers with related knowledge</u> will have high quality and low defects

Reviewer Assignment Problem

• It is difficult and time-consuming to find an appropriate reviewers in large-scale projects

e.g. Globally distributed software development

Previous Work

• Review Bot's algorithm[1]

- For industrial setting of VMware
- Selects reviewers who have reviewed in the same section of code change.
- Required a long history of code changes in code review

Reviewer Recommendation Algorithm

• Propose File Path Similarity (FPS) algorithm

• Select reviewers by calculating similarity of file paths comparing with file paths of previous reviews.

- Files with similar functions are usually located under the same or near directories. [2]
- Reviewers having similar knowledge of system would have reviewed similar file.

[2] Ivan T. Bowman, Richard C. Holt, and Neil V. Brewster. Linux as a case study: Its extracted software architecture. In Proceedings ICSE '99, pp. 555–563, 1999. Introduction > Reviewer Recommendation > Evaluation > Summary

Example of FPS algorithm

FPS score

• File Path Similarity score of new review R_n and past review R_p

$$FPS(R_n, R_p, m) = \frac{\sum_{\substack{f_n \in Files(R_n), \\ f_p \in Files(R_p)}} Similarity(f_n, f_p)}{|Files(R_n)| \times |Files(R_p)|} \times \delta^m$$

• Similarity Function:

Similarity
$$(f_n, f_p) = \frac{\text{commonPath}(f_n, f_p)}{\max(\text{Length}(f_n), \text{Length}(f_p))}$$

• commonPath (f_n, f_p) : Longest Common Prefix function returns number of directory/file names that appear from the beginning of both file path

Evaluation

• Accuracy (same as the review bot research)

Top-k Accuracy = $\frac{N}{-}$

Number of Correct Top-k recommendation

Total number of reviews

Study Projects

• Using Gerrit code review

Projects	Study Period*	# of Reviews	# of Files
AOSP	Oct 2008 – Jan 2012 (~2 years)	5,126	26,840
OpenStack	Jul 2011 – May 2012 (~1 year)	6,586	16,953
Qt	May 2011 – May 2012 (~1 year)	23,810	78,401

*Study period started from the 1st year of using peer code review.

Introduction > Reviewer Recommendation > Evaluation > Summary

Results

2/6/2014 Introduction > Reviewer Recommendation > Evaluation > Summary

Reviewer Assignment Problem

• It is difficult and time-consuming to find an appropriate reviewers in large-scale projects

Reviewer Recommendation Algorithm

Propose File Path Similarity (FPS) algorithm
Select reviewers by comparing file paths with previous reviews

- Files with similar functions are usually located in the same or near directories. [1]
- Reviewers having similar knowledge of system would have reviewed similar files.

