
Prevalence and Maintenance of Automated
Functional Tests for Web Applications

Laurent Christophe∗, Reinout Stevens∗, Coen De Roover†∗, Wolfgang De Meuter∗
∗Software Languages Lab, Vrije Universiteit Brussel, Brussels, Belgium
†Software Engineering Laboratory, Osaka University, Osaka, Japan

Email: lachrist—resteven—cderoove—wdmeuter@vub.ac.be

Abstract—Functional testing requires executing particular
sequences of user actions. Test automation tools enable scripting
user actions such that they can be repeated more easily. SE-
LENIUM, for instance, enables testing web applications through
scripts that interact with a web browser and assert properties
about its observable state. However, little is known about how
common such tests are in practice. We therefore present a cross-
sectional quantitative study of the prevalence of SELENIUM-
based tests among open-source web applications, and of the
extent to which such tests are used within individual applications.
Automating functional tests also brings about the problem of
maintaining test scripts. As the system under test evolves, its
test scripts are bound to break. Even less is known about the
way test scripts change over time. We therefore also present a
longitudinal quantitative study of whether and for how long test
scripts are maintained, as well as a longitudinal qualitative study
of the kind of changes they undergo. To the former’s end, we
propose two new metrics based on whether a commit to the
application’s version repository touches a test file. To the latter’s
end, we propose to categorize the changes within each commit
based on the elements of the test upon which they operate. As
such, we are able to identify the elements of a test that are most
prone to change.

I. INTRODUCTION

Testing is of vital importance in software engineering [22].
Of particular interest is functional GUI testing in which an
application’s user interface is exercised along requirement
scenarios. Functional GUI testing has recently seen the arrival
of test automation tools such as HP Quick Test Pro, SWT-
BOT1, ROBOTIUM2 and SELENIUM3. These tools execute so-
called test scripts which are executable implementations of
the traditional requirements scenarios. Test scripts consist of
commands that simulate the user’s interactions with the GUI
(e.g., button clicks and key presses) and of assertions that
compare the observed state of the GUI (e.g., the contents of
its text fields) with the expected one.

Although test automation allows repeating tests more fre-
quently, it also brings about the problem of maintaining test
scripts: as the system under test (SUT) evolves, its test scripts
are bound to break. Assertions may start flagging correct
behavior and commands may start timing out thus precluding
the test from being executed at all. A study on Adobe’s
Acrobat Reader found that 74% of its test scripts get broken
between two successive releases [20]. Worse, even the simplest
individual GUI change can cause defects in 30% - 70% of a

1http://eclipse.org/swtbot/
2https://code.google.com/p/robotium/
3http://docs.seleniumhq.org/

system’s test scripts [12]. For diagnosing and repairing these
defects, test engineers have little choice but to step through the
script using a debugger [3] —an activity found to cost e.g., the
Accenture company $120 million per year [12].

Several automated techniques for repairing broken test
scripts have therefore been explored: [19], [15], [4], [12],
[3]. These techniques apply straightforward repairs such as
updating the arguments to a test command (e.g., its reference to
a widget) or a test assertion (e.g., its comparison value). How-
ever, little is known about the kind of repairs that developers
perform in practice. Insights about manually performed repairs
are therefore of vital importance to researchers in automated
test repair.

In this paper, we present an empirical study on the
prevalence and maintenance of automated functional tests for
web applications. More specifically, we study functional tests
implemented in Java that use the popular SELENIUM library
to automate their interactions with the web browser. Section II
will outline the specifics of this library. Our study aims to
answer the following research questions:

RQ1 How prevalent are SELENIUM-based functional
tests for open-source web applications? To what
extent are they used within individual applica-
tions?

RQ2 Do SELENIUM-based functional tests co-evolve
with the web application? For how long is such
a test maintained as the application evolves over
time?

RQ3 How are SELENIUM-based functional tests main-
tained? Which parts of a functional test are most
prone to changes?

The remainder of this paper is structured as follows.
Section II identifies the components of a typical automated
functional test that is implemented using SELENIUM. Ex-
amples include test commands (e.g., sending keystrokes to
the browser) and test assertions (e.g., comparisons against
the browser’s observable state). Section III seeks to answer
RQ1 through a quantitative analysis. To this end, we gather a
large-scale corpus of 287 Java-based web applications with
references to SELENIUM. We classify the projects in this
corpus and study the extent to which they use functional
tests in terms of relative code sizes. Answering the other
research questions requires a corpus that is representative of
projects with an extensive usage of SELENIUM. We therefore
refine the large-scale corpus into a smaller high-quality corpus
of 8 projects that feature many functional tests. Section IV

http://eclipse.org/swtbot/
https://code.google.com/p/robotium/
http://docs.seleniumhq.org/

Language Keyword # Repositories # Files
Java openqa.selenium 4287 113435

Python from selenium import webdriver 1800 6207
Ruby require selenium webdriver 1503 9169

C# using OpenQA.Selenium 558 14473
JavaScript require selenium webdriver 237 643

TABLE I: Search hits for SELENIUM on GitHub at 9/12/2013.

answers RQ2 through a quantitative analysis of every commit
in their version repository. We complement this analysis with
a discussion of illustrative “Change History Views” [23] for a
selection of projects. Finally, Section IV answers RQ3 through
an automated qualitative analysis of the changes to SELENIUM-
based tests within each of these commits. To this end, we
categorize each change based on the test component upon
which it operates.

II. SELENIUM FOR AUTOMATED FUNCTIONAL TESTING

Several open-source frameworks for automating functional
tests have become available. Examples include ROBOTIUM
for testing mobile Android applications, SWTBOT for testing
SWT-based desktop applications, and SELENIUM for testing
web applications respectively. Apart from the targeted applica-
tions, these frameworks are very similar. Each provides an API
for scripting interactions with an application’s user interface
and asserting properties about its observable state. Our study
focuses on SELENIUM because its API is representative and it
has grown into an official W3C standard called WebDriver4.

Table I depicts the popularity of SELENIUM amongst dif-
ferent programming languages of projects available on GitHub.
This table is populated by looking for projects that contain the
appropriate import statements.

The fact extractors for our experiments will scope our
results to web applications and tests that are implemented in
Java. Moreover, we only consider tests that use the API directly
and not through some third-party framework. Such tests require
an import of the form import org.openqa.selenium at the top
of the compilation unit in which they reside. In the remainder
of this paper, we will refer to such files as SELENIUM files.
Any project that contains at least one SELENIUM file will be
called a SELENIUM project.

A. SELENIUM By Example: a GitHub Scraper

Listing 1 depicts a Java program that illustrates most of
the SELENIUM WebDriver API for Java. This API provides
functionality for interacting with a web browser (e.g., opening
a URL, clicking on a button, or filling a text field), and func-
tionality for inspecting the website that is currently displayed
(e.g., retrieving its title or a particular element of its DOM).
Table II gives an overview of the typical components of a
SELENIUM-based functional test. Assertions are missing from
the depicted program as it is not a functional test, but rather
a scraper for the GitHub website.

The program’s main method opens a connection to the
web browser on line 47. Line 54 invokes method fetchUrl

with this connection and the URL of a GitHub page with
search results. Line 32 directs the web browser to this URL.
Table II refers to such navigation requests and user actions
as commands. Assuming the page rendered correctly, line 33

4http://www.w3.org/TR/2013/WD-webdriver-20130117/

Driver-related Expressions opening and closing a connection to the web
browser; e.g., new ChromeDriver(), driver.close()

Locators Expressions locating specific DOM elements;
e.g., driver.findElements(By.ByName("...")),
webElement.findElement(By.ById("..."))

Inspectors Expressions retrieving properties of a DOM
element; e.g., element.getAttribute("..."),
element.isDisplayed()

Commands Navigation requests and interface interactions;
e.g., driver.get("..."), navigation.back(),
element.click(), element.sendKeys("...")

Demarcators Means for demarcating actual tests and setting up or tearing
down their fixtures, typically provided by a Unit Testing
framework; e.g., Test, BeforeClass

Assertions Predicates over values, typically provided by a Unit Testing
framework ; e.g., assertTrue(element.isDisplayed()),
assertEquals(element.getText(), value)

Exception-related Means for handling exceptions that stem
from interacting with a separate process. e.g.,
StaleElementReferenceException, TimeOutException

Constants Constants specific to web pages such as identifiers and
classes of DOM element.

TABLE II: Components of a SELENIUM-based functional test.

retrieves all h1 elements in its DOM. We refer to such calls as
locator expressions. Through a similar inspector expressions,
line 36 verifies that there is no text "Whoa there!" within
these elements. In this way, the program checks that it has
not exceeded GitHub’s requests per minute threshold. It then
proceeds to locate all div elements that include the class
code-list. Those elements correspond to the hits shown on
each search page; a matching source code fragment, and the
file and repository it belongs to. Lines 24 and 25 extract this
information from each element.

Note that our SELENIUM-based scraper is strongly coupled
to the user interface of GitHub. Small changes to GitHub web
pages can easily break the scraper. For instance, a change to
the "Whoa there!" text will cause it to keep on exceeding
the threshold and miss hits. Likewise, changes to the element
class that labels search hits will also cause our scraper to miss
hits. SELENIUM-based functional tests are prone to the same
problem. The problem arises every time the interface of the
system under test is changed.

III. PREVALENCE OF SELENIUM TESTS

RQ1 How prevalent are SELENIUM-based functional tests for open-
source web applications? To what extent are they used within indi-
vidual applications?

Table I gives an informal account of the popularity of
SELENIUM among the projects that are hosted on GitHub. In
this section, we provide more in-depth insights about the usage
of SELENIUM within these projects.

A. Large-Scale Corpus of Projects that use SELENIUM

We will answer RQ1 in an exploratory manner using
a large-scale corpus of Java-based SELENIUM projects. We
gather this corpus using a variant of the GitHub scraper
explained above. This variant not only respects the threshold
on requests per minute, but also accounts for the fact that
GitHub search pages show at most 1000 results (100 pages of
10 hits). To overcome this limitation, the variant implements
a sliding window that limits all search requests to files of a
window-wise increasing size.

Scraping GitHub for the initial 4287 candidate repositories
for our corpus (cf. Table I) took most of the week of December

http://www.w3.org/TR/2013/WD-webdriver-20130117/

1 import j a v a . u t i l . I t e r a t o r ;
2 import j a v a . u t i l . L i s t ;
3
4 import org . openqa . s e l e n i u m . By ;
5 import org . openqa . s e l e n i u m . WebDriver ;
6 import org . openqa . s e l e n i u m . WebElement ;
7 import org . openqa . s e l e n i u m . f i r e f o x . F i r e f o x D r i v e r ;
8
9 p u b l i c c l a s s S c r a p e r {

10
11 p u b l i c s t a t i c c l a s s R a t e L i m i t E x c e p t i o n ex tends E x c e p t i o n {
12 p u b l i c R a t e L i m i t E x c e p t i o n (S t r i n g msg) {
13 super (msg) ;
14 }
15 }
16
17 p r i v a t e s t a t i c vo id p r i n t H i t s (WebDriver d r i v e r) {
18 S t r i n g x p a t h = ” / / d i v [@class = ’ code−l i s t ’] /∗ ” ;
19 L i s t<WebElement> h i t s = d r i v e r . f i n d E l e m e n t s (By . x p a t h (x p a t h)) ;
20 I t e r a t o r<WebElement> i t e r = h i t s . i t e r a t o r () ;
21 whi le (i t e r . hasNext ()) {
22 x p a t h = ” . / p [@class = ’ t i t l e ’] / a ” ;
23 L i s t<WebElement> l i n k s = i t e r . n e x t () . f i n d E l e m e n t s (By . x p a t h (x p a t h)) ;
24 S t r i n g repos i t o ryURL = l i n k s . g e t (0) . g e t A t t r i b u t e (” h r e f ”) ;
25 S t r i n g f i leURL = l i n k s . g e t (1) . g e t A t t r i b u t e (” h r e f ”) ;
26 System . o u t . p r i n t l n (r epos i t o ryURL + ” ” + f i leURL) ;
27 }
28 }
29
30 p r i v a t e s t a t i c vo id fetchURL (WebDriver d r i v e r , S t r i n g u r l)
31 throws R a t e L i m i t E x c e p t i o n {
32 d r i v e r . g e t (u r l) ;
33 L i s t<WebElement> h1s = d r i v e r . f i n d E l e m e n t s (By . x p a t h (” / / h1 ”)) ;
34 I t e r a t o r<WebElement> i t e r = h1s . i t e r a t o r () ;
35 whi le (i t e r . hasNext ()) {
36 i f (i t e r . n e x t () . g e t T e x t () . c o n t a i n s (”Whoa t h e r e ! ”)) {
37 throw new R a t e L i m i t E x c e p t i o n (” GitHub r a t e Exceeded ! ”) ;
38 }
39 }
40 }
41
42 p u b l i c s t a t i c vo id main (S t r i n g [] a r g s)
43 throws R a t e L i m i t E x c e p t i o n , I n t e r r u p t e d E x c e p t i o n {
44 i n t minSize = 1000 ;
45 i n t maxSize = 1050 ;
46 long d e l a y = 5000 ;
47 WebDriver d r i v e r = new F i r e f o x D r i v e r () ;
48 S t r i n g u r l = ” h t t p s : / / g i t h u b . com / s e a r c h ? r e f = s e a r c h r e s u l t s ” ;
49 u r l = u r l + ”&t y p e =Code ” ;
50 u r l = u r l + ”&l = j a v a ” ;
51 u r l = u r l + ”&q=\” i m p o r t o rg . openqa . s e l e n i u m\”” ;
52 u r l = u r l + ”+ s i z e : ” + minSize + ” . . ” + maxSize ;
53 f o r (i n t i = 1 ; i <= 100 ; i ++) {
54 fetchURL (d r i v e r , u r l + ”&p=” + i) ;
55 Thread . s l e e p (d e l a y) ;
56 p r i n t H i t s (d r i v e r) ;
57 }
58 d r i v e r . q u i t () ;
59 }
60 }

Listing 1: Java program for scraping GitHub using Selenium.

Fig. 1: Distribution of the number of commits in (left) and total
size in kilobytes (right) of each repository in the large-scale
corpus (red) and high-quality corpus (green).

9, 2013. From these candidate repositories, we systematically
selected repositories that: (i) were created before 2013,
(ii) have over 100 commits in the last year, and (iii) are
larger than 500 KBytes. We assume that these criteria result
in a selection of relatively mature project repositories. Only
287 of the initial 4287 candidate project repositories satisfy
all criteria. These 287 repositories constitute our large-scale
corpus of SELENIUM projects.

Figure 1 and the following table summarize our large-scale
corpus in terms of the distribution of the number of commits

in and the total size in kilobytes of each git repository:

Min 1st Quartile Median 3rd Quartile Max
Commit 101 211 358 937 22714
Size 512 3545 15884 57831 2584284

A logarithmic scale is used because the values for these
metrics vary greatly. While the xwiki-platform and neo4j

repositories have 22714 and 20139 commits respectively (i.e.,
the top-most data points on the left violin plot), there are
several repositories with barely 100 commits in total (i.e., the
data points at the bottom of the left violin plot). Note that the
subset of the large-scale corpus that corresponds to our high-
quality corpus (cf. Section IV-A) is depicted in green. We use
this corpus to answer the other research questions.

B. Research Method

As illustrated by our GitHub crawler, SELENIUM can be
used for other purposes than automating functional tests. We
therefore manually inspect and categorize the repositories in
the large-scale corpus as follows:

APP Web service providers (e.g., tedeling/ehour).
FMW Framework for building web applications (e.g., juzu/juzu).
EXT SELENIUM extensions, mostly testing frameworks (e.g.,

FluentLenium/FluentLenium) or web crawlers.
EXP Web application examples for demonstration or

learning purposes (e.g., photon-infotech/php-blog,
tomcz/example-webapp).

MISC Unclassified projects (e.g., xmx0632/deliciousfruit).

APP projects use SELENIUM for automating functional
GUI tests. FMW projects use SELENIUM more for unit testing
purposes, verifying that the framework generates mock web
applications correctly. EXP projects correspond to small ex-
periments involving SELENIUM for demonstration or learning
purposes. EXT projects are testing frameworks, crawlers or
code coverage analyzers that build upon SELENIUM. MISC
projects defeat this classification due to insufficient or non-
English documentation.

Next, we perform an exploratory analysis of extent-related
metrics of SELENIUM usage in our large-scale corpus. Con-
cretely, we checked out a snapshot of the “main” branch
of each repository at December, 13 2013 and compute the
following metrics:

Files Number of .java files in the last snapshot.
LoC Number of lines in every .java file, after removing comments

and empty lines.
Sel Files Number of .java files with an import containing the string

“.selenium.”.
Sel LoC Number of lines in every SELENIUM file, after removing

comments and empty lines.

C. Results

Table III summarizes the corpus-wide results for each
extent-related metric. The largest category of projects are the
web frameworks FMW (28%), closely followed by actual
web applications APP (26%). As expected, EXT projects
extending SELENIUM have the largest number of SELENIUM
files and highest amount of SELENIUM lines-of-code. EXP is
the category with the least of them. Although 75% of web
applications APP have fewer than 19 SELENIUM files, the
scatterplots in Figure 2 reveal that several use SELENIUM
to a much larger extent.

Fig. 2: Relations between the extent-related metrics for SELENIUM by category.

Scope Count Files LoC Sel Files Sel Loc
APP 76 (26%) 305-804-2642 4876-19203-72275 3-6-19 229-600-2010

FMW 81 (28%) 484-973-3254 11873-31793-73840 2-4-14 167-421-1055
EXT 54 (19%) 108-196-404 3612-5843-10133 4-18-53 357-1428-4338
EXP 38 (13%) 221-903-1806 1180-5139-23831 2-4-9 134-406-674

MISC 38 (13%) 162-518-971 3012-9143-30409 3-7-10 206-384-578
Corpus 287 231-600-1781 4407-13734-49062 3-6-19 217-497-1619

TABLE III: Extent-metrics of the large-scale corpus by cate-
gory. Each cell contains the quartiles Q1-Q2-Q3.

Figure 2 depicts different scatterplots involving these
extent-related metrics. Again, a logarithmic scale has been
used in order to show all data points. No clear correlation
can be discerned between the size of a web application
(red dot) and the extent to which it uses SELENIUM in
terms of test files (first plot), nor in terms of lines of
test code (second plot). We attribute this to the difference
in testing strategy adopted by web applications. Additionally,
the complexity of the user interface of a web application —
and hence the corresponding tests— cannot be gauged from
size-related metrics alone.

Independently from the category, the right-most plot ex-
hibits a rather clear exponential relation between the
number of SELENIUM files and the number of SELENIUM
lines of code. Its non-linear nature means that projects that
include a lot of SELENIUM files tend to have larger SELE-
NIUM files as well. For the categories APP, FMW and EXP
; a possible explanation lies in the seemingly widespread
usage of the so-called “PageObjects” pattern5. This pattern
advocates modeling the user interface with separate classes,
of which the methods correspond to the services offered on
each web page such as displaying the details for an order
or navigating to another page. Implementing a test in terms
of interactions with these services rather than commands
ought to render them less brittle to low-level page changes.
Projects Zimbra/zimbra-source and Mifos/head are examples
of projects that contain many and very complex page classes.
Here, every page class seems to model one part of the user
interface in great detail. Of course, detailed user interface
models add to the code required for the test logic itself.

D. Threats to Validity

Projects can demarcate their functional tests in different
ways (i.e., see category “demarcators” in Table II). We have

5https://code.google.com/p/selenium/wiki/PageObjects

not attempted to measure how many functional tests a single
SELENIUM file defines. Projects with few SELENIUM files
might therefore not be using SELENIUM extensively, or be
grouping all of their functional tests in but a few files. The
same goes for the lines of code metric.

Some repositories consist of test files only (e.g.,
Wikia/selenium-tests and exoplatform/ui-test). Some
projects therefore seem to version their functional tests and
the system under test in separate repositories. We categorized
those test-exclusive projects following their system under test.
This explains the unusual concentration of SELENIUM code
within some repositories.

Finally, our observations might differ for non-Java web
applications and functional tests implemented using a non-Java
binding for the SELENIUM WebDriver API. However, we do
expect to see the same trends as the density of API calls within
these tests is typically high. The same goes for tests that use
the APIs of other frameworks for automating functional tests.
Although intended for web applications, the WebDriver API
is fairly representative.

IV. QUANTITATIVE ANALYSIS OF TEST CHANGES

RQ2 Do SELENIUM-based functional tests co-evolve with the web
application? For how long is such a test maintained as the application
evolves over time?

A. High-quality Corpus of Projects that use SELENIUM

Answering RQ2 requires a high-quality corpus of projects
that use the framework extensively. We therefore use the
number of SELENIUM files as an additional selection criterion.
Inspired by the descriptive statistics from the previous section,
we set this criterion to a minimum of 40 for the high-quality
corpus. It is satisfied by 47 of the original 287 repositories
in the large-scale corpus. The high-quality corpus consists
of a manually verified selection of these 47. This selection
excludes web frameworks and test frameworks built on top
of SELENIUM. It also excludes test-only project repositories
(cf. Section III-D). As such, the high-quality corpus consists
of repositories that version true web applications and their
SELENIUM-based functional tests. Table IV describes the
repositories in our high-quality corpus.

https://code.google.com/p/selenium/wiki/PageObjects

GitHub Repository Project Description # Commit # Sel. Commit Java LoC Sel. LoC
gxa/atlas Gene Expression Atlas Portal for sharing gene expression data 2118 358 32375 5374

INCF/eeg-database EEG/ERP portal Portal for sharing EEG/ERP portal clinical data 854 17 68262 7158
mifos/head MiFos Portfolio management for microfinance institutions 7977 505 338705 18735

motech/TAMA-Web Tama Front office application for clinics 2358 239 62034 2815
OpenLMIS/open-lmis OpenLMIS Logistics management information system 4714 1153 72275 19195

xwiki/xwiki-enterprise XWiki Enterprise Enterprise-level wiki 688 164 28405 13506
zanata/zanata-server Zanata Software for translators 3430 81 111698 3509

Zimbra-Community/zimbra-sources Zimbra Enterprise collaboration software 377 243 1025410 189413

TABLE IV: The 8 repositories in the high-quality corpus.

●●●●●●●●●
●●●●●●●●●

●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●● ●●●●●●●●●

●●●●
●

●●●●●● ●●●●●●●●●
●●●●●●●●●● ●●●●●●● ● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●

●●●●●●●●● ●●●●●●●● ● ●●●●●●●●●●●
●●●●●●● ●●●●●●●●●

●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●● ● ●●●● ●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●● ●●●●● ●● ●●●●● ●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●

● ●● ●●●●●● ● ●●● ●●●●

0

500

1000

0 500 1000 1500
CommitId

F
ile

Id

ChangeType

● added−regular

added−selenium

delete−regular

delete−selenium

edit−regular

edit−selenium

●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●

●●

●●●●●●●●●●●
●

●

●●●●●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●

●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●

●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●● ●●●●●●●●●●●
●● ●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●● ●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●

●

●

●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●
●
●
●
●
●●
●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●
●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●
●●●
●●
●●●●● ●●●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●

●●
●
●●●●●●
●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●

●● ●●●●●●●●●●●●●●●
●●
●●●●●●●

●

●●● ●●●●●●●

●

●●●●

●

●● ●●●●●●●●●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0

500

1000

1500

0 1000 2000 3000 4000
CommitId

F
ile

Id

ChangeType

● added−regular

added−selenium

delete−regular

delete−selenium

edit−regular

edit−selenium

●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●
●●●●●●●

●

●●●
●
●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●

●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●

●

●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●

●

●

●●

●●●●●●

●●

●

●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●
●●●●●●●●●●●●
●●

●

●●●

●

●●●●●●

●

●●●●●●●
●
●●●
●●
●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●

●

●●●

●

●●●●●●●●●●●●
●●●●●●

●

●●●●●●●●●

●●●●●●

●

●●●●●●

●

●

●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●

●

●●●●
●●
●●●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●

●●

●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●
●●●●●●●

●

●●●

●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●

●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●

●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●

●●
●●
●
●●●●
●●●●
●
●●●
●
●●
●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●
●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●
●
●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●

●● ●●●●● ●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●
●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●
●●●

●

●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●

●●

●●

●

●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●

●●●
●●●●
●
●●
●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●
●●
●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●● ●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●

●●
●

●●●●

●
●

●

●

●●

●●●●●●●●
●●●●

●
●

●●

●

●●●●●●●●●●●
●●●●●●

●●

●●●●
●

●●●●

●●●●●●
●
●●
●●●●●●●●●●

0

500

1000

1500

0 500 1000 1500 2000
CommitId

F
ile

Id

ChangeType

● added−regular

added−selenium

delete−regular

delete−selenium

edit−regular

edit−selenium

Fig. 3: Change histories of the XWIKI-ENTERPRISE (left), OPEN-LMIS (middle), and ATLAS projects (right).

B. Project-specific Change Histories

Before answering RQ2 quantitatively with two new corpus-
wide metrics, we provide some visual insights into the commit
histories of individual projects from our high-quality corpus.
Figure 3 depicts a variant of the Change History Views
introduced by Zaidman et al. [23] for three randomly selected
projects. For each commit in a project’s history, our variant
visualizes whether a SELENIUM (rather than a unit test file)
or application file was added, removed or edited. The X-axis
depicts the different commits ordered by their timestamp. The
Y-axis depicts the files of the project. To this end, we assign a
unique identifier to each file. We ensure that SELENIUM files
get the lowest identifiers by processing them first. As a result,
they are located at the bottom of the graph.

Figure 3 clearly demonstrates that SELENIUM tests are
modified as the projects evolve. However, the modifications
do not appear to happen in a coupled manner. This is to be
expected as SELENIUM tests concern the user interface of an
application, while application commits also affect the appli-
cation logic underlying the user interface. Any evolutionary
coupling will therefore be less outspoken than, for instance,
between a unit test and the application logic under test.

Note that a large number of files is removed and added
around revision 1000 of the xwiki-enterprise project. The
corresponding commit message6 reveals that this is due to a
change in the project’s directory structure. We see this occur in
several other projects. In providing a more quantitative answer
to RQ2, the remainder of this section will therefore take care
to track files based on their content rather than their path alone.

C. Corpus-Wide Commit Activity Metrics

We first aim to provide quantitative insights into the pace
at which SELENIUM-based functional tests are changed as the
web application under test evolves.

1) Research method: To this end, we evaluate the high-
quality corpus against several metrics that are based on the
following categorization of commit activities:

6Commit 74feec18b81dec12d9d9359f8fc793587b4ed329

Repository #S ASC SSC ASD SSD

gxa/atlas 258 6.67 1.39 1.5 0.33
INCF/eeg-database 11 75.36 1.55 98.59 2.8

mifos/head 381 19.58 1.33 6.7 0.4
motech/TAMA-Web 170 11.52 1.41 3.33 0.44

OpenLMIS/open-lmis 704 5.05 1.64 0.45 0.16
xwiki/xwiki-enterprise 96 5.33 1.71 6.94 1.95

zanata/zanata-server 51 65.65 1.59 35.82 0.72
. . . /zimbra-sources 66 1.74 3.73 1.81 7.09

TABLE V: Averaged commit activity metrics for the high-
quality corpus. The first column denotes either #SS or #AS
(cannot diverge by more than 1).

SC SELENIUM commit: commit that adds, modifies or deletes at
least one SELENIUM file.

AC Application commit: commit that does not add, modify or delete
any SELENIUM file.

The same categorization transposes to commit sequences:

SS SELENIUM span: maximal sequence of successive SC.
AS Application span: maximal sequence of successive AC.

Finally, this categorization enables computing the following
metrics about each kind of span:

ASD,C Length of an AS in days and in commits.
SSD,C Length of a SS in days and in commits.

2) Results: The next table depicts the results for the com-
mit activity metrics for the repositories in the high-quality cor-
pus. The most revealing entries are related to the average length
of the non-SELENIUM spans measured in commits (ASC).
It takes on average about 11.23 non-SELENIUM commits
(or 4.33 days) before a commit affects a SELENIUM file.
However, this mean is largely influenced by outliers since
the third quartile is even lower with only 9 non-SELENIUM
commits (2.05 days). These results suggest that SELENIUM-
based functional tests do co-evolve with the web application
under test.

ASC SSC ASD SSD

Mean 11.23 1.59 4.33 0.66
Std Deviation 73.07 1.36 33.66 4.9

1st Quartile 2 1 0.05 0.02
Median 4 1 0.54 0.06

3rd Quartile 9 2 2.05 0.36

Table V scopes the same results for each project
of the high-quality corpus. Repositories gxa/atlas and
xwiki-enterprise, for instance, change their test scripts as
often as every 6.67 and 5.33 AC respectively. Others, such
as eeg-database and zanata-server, merely update their test
scripts every 75.36 and 65.65 AC respectively. In fact, their
fairly low number of spans #S indicates that SELENIUM
activity and application activity does not alternate often. It
turns out that eeg-database made little use of its test scripts
and eventually removed all of them in March 2014 (i.e., after
we collected our data). The stated reason is that the tests
have become obsolete7. According to Alex Eng, a developer of
zanata-server, SELENIUM tests are updated on release basis
and not when new features are committed.

For all but one project in our corpus, the AS last much
longer than the SS (i.e., about a 13-fold on average). This
suggests that, as expected, developers spend the vast majority
of their time on the web application rather than its auto-
mated functional tests. Repository zimbra-source forms the
exception. Investigation revealed that this GitHub repository
is a mirror of another Perforce one from which a cumulative
commit is transferred on a daily basis 8. Given the project’s
size, chances are great that such a cumulative commit affects
a SELENIUM file.

On average, SELENIUM activities span up to 1.59 commits
(i.e., SSC). Again, the zimbra-source repository is an outlier
for the reasons explained above. This suggests that SELENIUM
spans are rather short; one or two commits seem to suffice for
bringing the tests up-to-date. Few supplementary commits are
needed. Note that this is even the case for projects with fairly
lengthy application spans. Section V investigates how scripts
are maintained.

3) Threats to Validity: Extensively engineered test suites
might correspond to a class hierarchy of which only the root
tests import the SELENIUM WebDriver API. Our implemen-
tation is oblivious to maintenance efforts on such leaf tests.
This might have resulted in an over-approximation of the ap-
plication commits and under-approximation of the SELENIUM
commits.

Lengths of SELENIUM spans, measured in commits as well
as in days, are a crude substitute for information about the
actual time spent and the difficulty of the maintenance efforts.

Our interpretation of the metrics assumes that the SELE-
NIUM test updated by an SC is actually testing the function-
ality affected by a preceding AC. There is no straightforward,
automated means to verify this relation. Such verification
requires knowledge about which application logic is invoked
by each scripted user interaction. As functional tests aim
to exercise an interface along extensive scenarios, a lot of
application logic is executed at once.

Finally, our findings are once again specific to the Java
bindings for the Selenium WebDriver API. It therefore remains
to be seen whether they hold for other automated functional
tests (cf. Section III-D).

7Commit c723e9a373b9374d71c05ec3e605ba469d5903e8
8http://www.zimbra.com/forums/developers/

56176-zimbra-sourcecode-mirror-browseable-repository.html

Repository #B #D SvDay SvMod SvAC SvSC

gxa/atlas 202 45 45.16 3.89 173.64 33.31
INCF/eeg-database 58 1 0.72 3 0 3

mifos/head 430 65 316.34 3.55 1113.2 76.22
motech/TAMA-Web 203 87 47.91 1.09 260.22 42.72

OpenLMIS/open-lmis 371 140 73.06 4.71 633.96 167.31
xwiki/xwiki-enterprise 306 120 183.89 1.23 127 52.85

zanata/zanata-server 217 62 653.99 2.42 1180.02 28.47
. . . /zimbra-sources 1740 163 198.86 0.94 49.64 118.36

TABLE VI: Averaged maintenance metrics for the high-
quality corpus. #B and #D are the number of SELENIUM
files that are born and that die over time.

D. Corpus-wide Maintenance Metrics

We now complement the above metrics about commit ac-
tivities with metrics about the lifespan of individual SELENIUM
test files. These aim to provide insights about how long such
tests are maintained before they are abandoned (or changed
beyond recognition).

1) Research Method: We represent the lifespan of a SE-
LENIUM file as a sequence of similar blobs from successive
commits such that: (i) the first blob corresponds to a newly
added file, (ii) the next blobs correspond to successive mod-
ifications of that file (i.e., they are similar content-wise), and
(iii) the last blob corresponds to the last occurrence of the file.

This relies on a definition for the similarity of blobs.
We consider two blobs from successive git commits similar
if the younger one contains at least 66% of the same lines
of the older one. Successive blobs exceeding this threshold
correspond to the death (deletion) of and the birth (addition)
of a newly added file —regardless of their file name. This way,
our lifespans account for test files that are changed beyond
recognition.

These definitions give rise to the following maintenance
metrics about a single SELENIUM file:

SvDay Number of days the test survived.
SvMod Number of modifications to the test.
SvAC Number of application commits the test survived.
SvSC Number of SELENIUM commits the test survived.

For simplicity’s sake, we do not consider blobs with an
ill-defined lifespan. We therefore exclude SELENIUM files that
were still alive when we cloned the git repositories for our
high-quality corpus (cf. Section IV-A). This excludes about
80% of SELENIUM files.

2) Results: Table VI depicts the results for the above
maintenance metrics for individual repositories in the high-
quality corpus. The following table summarizes the results for
the entire corpus:

SvDay SvMod SvAC SvSC

Mean 193.29 2.36 421.76 89.31
Std Deviation 338.1 4.46 896.11 144.77

1st Quartile 9 0 20 9
Median 85.96 1 72 44

3rd Quartile 251.92 3 263 126

The most striking result is that 75% of the SELENIUM
lifespans in our corpus include at most three modifications
before the corresponding file was deleted or modified
beyond recognition (i.e., measures for SvMod). This indicates
that either user interfaces or the tested interactions with them
evolve drastically. The SELENIUM files in project open-lmis

survive the longest with an average of 4.71 modifications.

http://www.zimbra.com/forums/developers/56176-zimbra-sourcecode-mirror-browseable-repository.html
http://www.zimbra.com/forums/developers/56176-zimbra-sourcecode-mirror-browseable-repository.html

The measures SvDay, SvAC and SvSC vary greatly and
are very much project-dependent. Indications are the dispari-
ties among the project-scoped averages as well as the large
corpus-wide standard deviations. Projects eeg-database

and zanata-server have exceptionally high values for SvAC ,
corresponding to very infrequent updates to SELENIUM files.
The data for eeg-database is meaningless as its commit
history includes only one death of a SELENIUM file (i.e., all
but one files were still alive at the end). Assessing this project’s
maintenance activities therefore requires a more refined metric.
Possible hypotheses for the longevity of SELENIUM files
in zanata-server include that the project has a static user
interface that does not change often, or that the project’s
SELENIUM files are no longer in sync with the user interface
but still kept in the repository.

According to Table V, the other six projects update their
test scripts on much shorter and comparable intervals. Yet we
observe great differences: SELENIUM files from mifos survive
1113 application commits on average, while SELENIUM files
from gxa/atlas do so for only 173 application commits. We
attribute such disparities to differences in maturity between
these projects. mifos is very large and mature (as of May
2014: 12000+ commits, 38 releases and 55 contributors), while
gxa/atlas is much smaller (as of May 2014: 3600 commits,
4 branches and 6 contributors).

3) Threats to Validity: Our similarity threshold of 66% is
somewhat more relaxed than the default 80% used by git to
detect renamed files. This is because a manual investigation
revealed the 80% threshold to be too strict for detecting obvi-
ously related SELENIUM blobs. Extending a small test file with
a new case easily exceeds the maximum difference allowed by
this threshold. We settled on 66% through experimentation.

Discarding all SELENIUM lifespans that were not yet
completed at the time we cloned the repository removes about
80% of the total lifespans started in a commit history. These
files are likely among the most robust and oldest. As such, our
maintenance metrics are somewhat biased towards younger and
more fragile SELENIUM files. To better understand this bias,
we also produced the same statistics for all the SELENIUM
lifespans in our commit histories. We observed a slight increase
for SvDay, SvAC and SvSC . However, the measures for
SvMod remained the same, which only strengthens our most
outspoken observation.

The external threats to validity for the “commit activity”
metrics also hold for this experiment (cf. Section IV-C3).

V. QUALITATIVE ANALYSIS OF TEST CHANGES

RQ3 How are SELENIUM-based functional tests maintained? Which
parts of a functional test are most prone to changes?

A. Research Method

We answer RQ3 with a qualitative study of the changes
that SELENIUM-based functional tests undergo throughout the
evolution of the system under test. The repositories from the
high-quality corpus (cf. Section IV-A) serve as subjects. More
concretely, we will compute all changes in their commit history
and categorize each change according to the component of the
test upon which it operates. Table II lists the test component
categories that form the basis for this categorization.

For our study, changes correspond to tree edit operations
on the Abstract Syntax Tree (AST) of a SELENIUM-importing
source file. A child of a node can either be a primitive value
(such as a string), a single node or a sequence of nodes. We
discern the following tree edit operations:

Insert A new node is inserted into a sequence of node children.
Update A single child or primitive value of a node is updated to a

different node or value.
Move A node is moved to a different location in the AST.
Delete A node is removed from the AST.

Combining these changes with the test component cate-
gories of Section II-A results in a component-wise categoriza-
tion of the changes in a commit. For instance, one change can
update the argument of a locator expression. Another change
can insert a new test demarcator. Yet another change may
delete a test command.

We compute for each project in the high-quality corpus the
total number of changes made to SELENIUM files throughout
its history, as well as how frequently a change is classified as
affecting a specific test component category. Combining both
provides us insights into which components of a SELENIUM
file are most prone to change.

B. Automating the Categorization of Test Changes

The long commit histories within the high-quality corpus
call for a form of automatization. To this end, we extend the
general-purpose history querying tool QWALKEKO [21] with
support for the aforementioned tree edit operations. Before
detailing this new extension called CHANGENODES, we re-
capitulate the pre-existing EKEKO and QWAL components.

1) EKEKO, a Program Query Language: EKEKO [6] is a
tool for answering program queries about Java programs such
as “where does my code implement a double dispatching id-
iom?”. Its specification language is based on the CORE.LOGIC
port to Clojure of KANREN [10]. Source code characteris-
tics are therefore specified as logic conditions. Queries are
launched using the ekeko* special form which takes a vector
of logic variables as its first argument, followed by a sequence
of logic conditions:

1 (ekeko* [?s ?e]
2 (ast :ReturnStatement ?s) (has :expression ?s ?e))

Solutions to a query consist of bindings for its variables
such that all conditions succeed. For the above query, the
solutions consist of a return statement ?s and an expression
?e such that the latter is the former’s expression part. Binary
predicate ast/2 quantifies over AST nodes of a particular type,
while ternary predicate has/3 quantifies over the values of their
properties. In addition to such AST-related predicates, Ekeko
provides predicates that quantify over the structure, control
flow and data flow of a Java program.

2) QWAL, a Graph Query Language: QWAL enables
querying graphs using regular path expressions [5]. Regular
path expressions are an intuitive formalism for quantifying
over the paths through a graph. They are akin to regular
expressions, except that they consist of logic conditions to
which regular expression operators have been applied. Rather
than matching a sequence of characters in a string, they match
paths through a graph along which their conditions holds.

In the context of QWALKEKO, graphs represent a pro-
gram’s history. Nodes correspond to program versions, while
edges connect consecutive versions. Applied to such a version
graph, QWAL’s regular path expressions match sequences
of successive versions. The logic conditions within such an
expression specify source code characteristics of a single
version through EKEKO predicates. Version characteristics can
be specified through predicates provided by QWALKEKO itself.

1 (qwal graph start ?end [?left-cu ?right-cu ?change]
2 (in-current
3 (ast :CompilationUnit ?left-cu))
4 q=>
5 (in-current
6 (compilationunit|corresponding ?left-cu ?right-cu)
7 (change ?change ?left-cu ?right-cu)))

The above query quantifies over all changes ?change

between two successive versions of ?left-cu and ?right-cu

of the same Java compilation unit. The first line configures the
QWAL engine: it specifies the graph, start node and end node
of the path expression, and introduces three logic variables
?left-cu, ?right-cu and ?change. Note that the end node is an
unground logic variable, and will be bound to the end node
of the path expression. Lines 2–3 specify that there must be
an AST node of the type CompilationUnit present in the
current version, which is bound to ?left-cu. Line 4 uses the
QWAL primitive q=>. This primitive moves the current version
to one of its successors. Other primitives are available as well,
such as q=>*, which skips an arbitrary number of versions
(i.e., including none). For each primitive a counterprimitive is
available that traverses to a predecessor instead of a successor.
For example q<= traverses to a direct predecessor of the
current version. Lines 5–6 bind ?right-cu to the corresponding
compilation unit of ?left-cu. This is done by looking at
the package name and type declaration of ?left-cu. Finally,
changes between these two compilation units are computed
and bound to ?change.

3) CHANGENODES, a JDT Change Distiller: To answer
RQ3, we extended QWALKEKO with support for reasoning
about the changes between two ASTs in terms of tree edit
operations. We call this extension CHANGENODES9. At its
heart lies an algorithm by Chawathe et al. [2] that computes
a minimal script of tree edit operations (cf. Section V-A) that,
when applied, transforms a source AST into a target AST.

The same algorithm forms the foundation for
CHANGEDISTILLER [9]. Our implementation differs in
its use of language-specific nodes to represent ASTs, while
CHANGEDISTILLER uses generic and language-agnostic
nodes. To integrate with QWALKEKO, CHANGENODES uses
the nodes provided by the Eclipse JDT for Java programs.
We conjecture that this difference results in a better, shorter
output of change operations compared to CHANGEDISTILLER
due to a better matching of nodes.

4) Classifying Changes using the Extended QWALKEKO:
Figure 4 depicts our query to classify changes. It de-
tects which SELENIUM files have been modified between
two revisions through predicates fileinfo|edit/1 and
fileinfo|selenium/1. These predicates make use of metadata
that is stored for each project in QWALKEKO. Next, the query
binds the compilation unit of the changed SELENIUM file to

9https://github.com/ReinoutStevens/ChangeNodes

the variable ?right-cu. We need to classify the changes made
to this compilation unit. To this end, we use q<= to move
the current version to one of its predecessors. In this version
we retrieve the corresponding compilation unit, compute the
changes between both units and pass this change to the
predicate classify-change/2. This predicate succeeds when
the change can be classified in a particular category.

1 (ekeko* [?change ?info ?end ?type]
2 (qwal graph version ?end [?left-cu ?right-cu]
3 (in-current
4 (fileinfo|edit ?info)
5 (fileinfo|selenium ?info)
6 (fileinfo|compilationunit ?info ?right-cu))
7 q<=
8 (in-current
9 (compilationunit|corresponding ?right-cu ?left-cu)

10 (change ?change ?left-cu ?right-cu)
11 (classify-change ?change ?category))))

Fig. 4: Classifying the changes between two SELENIUM scripts

The classification of one particular change is done using
the surrounding context of the node affected by the change.
For example, a change is classified as a modification to an
assert statement if that change occurs within an invocation of
a method that starts with “assert”. To this end, the predicate
change|affects-node/2, depicted in figure 5, takes a bound
change and binds ?node to any node that is affected by that
change. An affected node is any parent node of the changed
node in both the source and the target AST of the change.
This predicate is used by change|affects-assert/2, which
succeeds if a change affects an assert statement. Detecting
whether an AST node is an assert statement is done by the
predicate methodinvocation|assert/1. This predicate suc-
ceeds if a node is an method invocation with the prefix “assert”.

1 (defn change|affects-node
2 [change ?node]
3 (conde
4 [(change|affects-node|original change ?node)]
5 [(change|affects-node|target change ?node)]))
6

7 (defn change|affects-node|original
8 [change ?node]
9 (fresh [?original]

10 (change|original change ?original)
11 (conde
12 [(== ?original ?node)]
13 [(ast-parent+ ?original ?node)])))
14

15 (defn methodinvocation|assert [?x]
16 (fresh [?strname]
17 (ast :Methodinvocation ?x)
18 (methodinvocation|named ?x ?strname)
19 (string|starts-with ?strname "assert"))
20

21 (defn change|affects-assert [change ?assert]
22 (all
23 (change|affects-node change ?assert)
24 (methodinvocation|assert ?assert)))

Fig. 5: Detecting whether a change affects an assert statement.
The other change classification queries are similar. For ex-

ample, a change is classified as changing an element locator if
the change either affects a @FindBy annotation or an invocation
of a method named findBy.

C. Results

Figure 6 depicts the ratio of changes that are classified
in a specific category for our high-quality corpus. The Y-axis
has a box plot summarizing the number of changes that were
classified in each category, divided by the total number of

https://github.com/ReinoutStevens/ChangeNodes

●

●

●

0.0

0.1

0.2

0.3

0.4

assertion command constant demarcator location
Change Classification

C
ha

ng
e

H
it

R
at

io

Fig. 6: Summary of the corpus-wide change classification.
Project Total Locator Command Demarcator Asserts Constants
Atlas 8068 90 3 104 3282 2586
XWiki 68665 115 154 24 1490 3114
Tama 31821 95 89 43 36 571
Zanata 12959 497 119 0 1 906
EEG/ERP 248 3 0 0 6 24
OpenLMIS 69792 2550 401 8 3454 8972

TABLE VII: Project-scoped change classification.

changes. Table VII lists project-scoped results. Our tool timed
out on two projects of the corpus with an extensive history.

The most frequently made changes are those to con-
stants and asserts. These are the two test components that
are most prone to changes. Constants occur frequently in
locator expressions to retrieve DOM elements from a web
page and in assert statements as the values compared against.10

Focusing future tool support for test maintenance on these
areas might therefore benefit test engineers most. Existing
work about repairing assertions in unit tests [4], and about
repairing references to GUI widgets in functional tests for
desktop applications [12] suggests that this is not infeasible.
Note that existing work also targets repairing changes in test
command sequences [15], but such repairs do not seem to
occur much in practice.

Both outliers in our results stem from the ATLAS project.
Its test scripts contain hardcoded genome strings inside assert
statements that are frequently updated.

D. Threats to Validity

The edit script generated by CHANGENODES is not always
minimal. It may incorrectly output a sequence of redundant
operations for nodes that are not modified. This is due to
some of the heuristics used by the differencing algorithm.
These unneeded operations only form a small set of the total
operations. We have performed random validations of distilled
changes to ensure the correctness of our results.

Several changes are classified by looking at names of
methods, without using type information. Computing this
information would be too expensive to do our experiments on
multiple large-scale projects. As a result some changes may
be incorrectly classified.

We have been unable to find examples of some of the
change categories from Section II. This is either due to our
change query being too strict, the patterns not being present in
the examined projects or due incorrectly distilling the changes
made to the SELENIUM scripts.

10Our tool classifies such changes also in the locator or assertion category.

VI. RELATED WORK

Little is known about how automated functional tests are
used in practice. A notable exception is Berner et al. [1]’s
account of their experiences with automated testing in in-
dustrial applications. Their observation “The Capability To
Run Automated Tests Diminishes If Not Used” underlines
the importance of test maintenance. In interviews with ex-
perts from different organizations, an industrial survey [16]
found that the main obstacles in adopting automated tests
are development expenses and upkeep costs. Finally, Leotta
et al. [17] recently reported on an experiment in which the
authors manually created two distinct sets of SELENIUM-based
automated functional tests for 6 randomly selected open-source
PHP projects. While the first set of tests corresponds to the test
scripts studied in this paper, the second set of tests is created
using a capture-and-replay functionality of the SELENIUM
IDE. The authors find that the latter are less expensive to
develop in terms of time required, but much more expensive to
maintain. To the best of our knowledge, ours is the first large-
scale study on the prevalence and maintenance of SELENIUM-
based functional tests —albeit on open-source software.

Unit tests have received more attention in the literature. The
work of Zaidman et al. [23] on the co-evolution of unit tests
with the application under test is seminal. Apart from “Change
History Views” (cf. Section IV-B), they also proposed to plot
the relative growth of test and production code over time in
“Growth History Views”. This enables observing whether their
development proceeds synchronously or in separate phases.
Fluri et al. follow a similar method in their study on co-
evolution of code and comments [8]. The same goes for a
study on co-evolution of database schema and application code
by Goeminne et al. [11]. Our metrics from Section IV aim to
provide quantitative rather than visual insights into this matter,
based on commit activities rather than code growth.

Method-wise, there are several works tangential to ours
in mining software repositories. Germàn and Hindle [18], for
instance, classify metrics for change along the dimensions of
whether the metric is aware of changes between two distinct
program versions, of whether the metric is scoped to entities
or commits, and of whether the metric is applied at specific
events or at evenly spaced intervals. The commit activity and
maintenance metrics from Section IV are scoped to commits
and SELENIUM files, unaware and aware of program changes,
and applied at every and specific types of commits respec-
tively. Several techniques and metrics have been proposed for
detecting co-changing files in a software repository (e.g., [13],
[24]). We expect such fine-grained evolutionary couplings to
be less outspoken in our setting because test scripts exercise
an implemented user interface along extensive scenarios, rather
than the implementation itself. More research is needed.

Section V distilled and subsequently categorized changes
within each commit to a SELENIUM file. Similar analyses have
been performed using the CHANGEDISTILLER [9] tool. The
aforementioned study by Fluri et al. [8], for instance, includes
a distribution of the types of source code changes (e.g., return
type change) that induce a comment change. Another fine-
grained classification of changes to Java code has also been
used to better quantify evolutionary couplings of files [7]. In
contrast to these general-purpose change classifications, ours
is specific to automated functional tests. More coarse-grained

change classifications have been explored as well. Hindle et
al. [14], for instance, successfully categorize large commits
as relating to a specific maintenance activity (e.g., adaptive
or corrective) using machine learning techniques on commit
messages alone.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents the first extensive study of the preva-
lence and maintenance of SELENIUM-based functional tests
for web applications. Its contributions include: (i) a cross-
sectional quantitative analysis of the prevalence of such tests
using extent-related metrics (on a large-scale corpus of 287
open-source GitHub repositories that use SELENIUM), (ii) a
longitudinal quantitative analysis of their co-evolution with
the application under test, using both metrics derived from
commit activities and metrics derived from the lifespan of
individual tests (on a high-quality corpus of 8 projects that
use SELENIUM extensively), and (iii) a longitudinal qualitative
analysis of the kind of changes tests undergo (on the same
corpus). To automate this analysis, we presented a signifi-
cant QWALKEKO [21] extension that distills and classifies
changes within each commit based on the elements of the
test upon which they operate. Our corpora, tools and results
are included in the paper’s replication package available from
http://soft.vub.ac.be/˜lachrist/icsme14/.

As our immediate future work, we consider extending
our analysis from classifying individual changes to detecting
known change patterns (i.e., coordinated sets of changes) such
as the addition or removal of pages to the SELENIUM-specific
“PageObjects” pattern. Their detection might prove useful for
maintaining the traceability between a functional test and the
web application under test. Mining unknown change patterns,
on the other hand, might uncover interesting avenues for
researchers in test repair. In general, we believe the prevalence
of automated functional testing to warrant additional research
in techniques and tools that support test engineers.

ACKNOWLEDGMENTS

This work has been supported, in part, by the Cha-Q SBO project of
the Flemish agency for Innovation by Science and Technology (IWT), by a
PhD scholarship of the same agency, by the Cognac project of the Research
Foundation - Flanders (FWO), by the Japan Society for the Promotion of
Science, Kakenhi Kiban (S), No.25220003, and by the Osaka University
Program for Promoting International Joint Research.

REFERENCES

[1] S. Berner, R. Weber, and R. K Keller. Observations and lessons learned
from automated testing. In Proc. of the 27th Int. Conf. on Software
Engineering (ICSE05), 2005.

[2] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom.
Change detection in hierarchically structured information. In Proc. of
the ACM SIGMOD Int. Conf. on Management of Data (SIGMOD96),
1996.

[3] S. Roy Choudhary, D. Zhao, H. Versee, and A. Orso. Water: Web
application test repair. In Proc. of the 1st Int. Workshop on End-to-End
Test Script Engineering, 2011.

[4] B. Daniel, V. Jagannath, D. Dig, and D. Marinov. Reassert: Suggesting
repairs for broken unit tests. In Automated Software Engineering, 2009.
ASE’09. 24th IEEE/ACM Int. Conf. on, 2009.

[5] O. de Moor, D. Lacey, and E. Van Wyk. Universal regular path queries.
Higher-Order and Symbolic Computation, 2002.

[6] C. De Roover and R. Stevens. Building development tools interactively
using the ekeko meta-programming library. In Proc. of the CSMR-
WCRE Software Evolution Week (CSMR-WCRE14), 2014.

[7] B. Fluri and H. C. Gall. Classifying change types for qualifying change
couplings. In Proc. of the 14th Int. Conf. on Program Comprehension
(ICPC06), 2006.

[8] B. Fluri, M. Wursch, and H. C. Gall. Do code and comments co-evolve?
on the relation between source code and comment changes. In Proc.
of the 14th Working Conf. on Reverse Engineering (WCRE07), 2007.

[9] B. Fluri, M. Würsch, M. Pinzger, and H. C. Gall. Change distilling:
Tree differencing for fine-grained source code change extraction. Trans-
actions on Software Engineering, 33(11), 2007.

[10] D. P. Friedman, W. E. Byrd, and O. Kiselyov. The Reasoned Schemer.
The MIT Press, 2005.

[11] M. Goeminne, A. Decan, and T. Mens. Co-evolving code-related and
database-related changes in a data-intensive software system. In Proc.
of the CSMR-WCRE Software Evolution Week (CSMR-WCRE14), 2014.

[12] M. Grechanik, Q. Xie, and C. Fu. Maintaining and evolving gui-directed
test scripts. In Proc. of the 31st Int. Conf. on Software Engineering
(ICSE09), 2009.

[13] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical coupling
based on product release history. In Proc. of the Int. Conf. on Software
Maintenance (ICSM98), 1998.

[14] A. Hindle, D. M. Germán, M. W. Godfrey, and R. C. Holt. Automatic
classification of large changes into maintenance categories. In Proc. of
the 17th IEEE Int. Conf. on Program Comprehension (ICPC09), 2009.

[15] S. Huang, M. B Cohen, and A. M Memon. Repairing gui test suites
using a genetic algorithm. In Proc. of the 3rd Int. Conf. on Software
Testing, Verification and Validation (ICST), 2010 , 2010.

[16] J. Kasurinen, O. Taipale, and K. Smolander. Software test automation
in practice: Empirical observations. Advances in Software Engineering,
January 2010.

[17] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella. Capture-replay vs.
programmable web testing: An empirical assessment during test case
evolution. In Proc. of the 20th Working Conf. on Reverse Engineering
(WCRE13), 2013.

[18] D. M. Germán and A. Hindle. Measuring fine-grained change in
software: Towards modification-aware change metrics. In 11th IEEE
Int. Symp. on Software Metrics (METRICS05), 2005.

[19] A. M Memon. Automatically repairing event sequence-based gui
test suites for regression testing. ACM Transactions on Software
Engineering and Methodology (TOSEM), 18(2):4, 2008.

[20] A. M Memon and M. Lou Soffa. Regression testing of guis. In ACM
SIGSOFT Software Engineering Notes, volume 28, ACM, 2003.

[21] R. Stevens, C. De Roover, C. Noguera, and V. Jonckers. A history
querying tool and its application to detect multi-version refactorings.
In Proc. of the 17th European Conf. on Software Maintenance and
Reengineering (CSMR13), 2013.

[22] G. Tassey. The economic impacts of inadequate infrastructure for
software testing. Technical report, National Institute of Standards and
Technology (NIST), 2002.

[23] A. Zaidman, B. Van Rompaey, S. Demeyer, and A. van Deursen. Mining
software repositories to study co-evolution of production & test code.
In Proc. of the 2008 Int. Conf. on Software Testing, Verification, and
Validation (ICST08), 2008.

[24] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller Mining Version
Histories to Guide Software Changes In Proc. of the 26th Int. Conf. on
Software Engineering (ICSE04), 2004.

http://soft.vub.ac.be/~lachrist/icsme14/

	Introduction
	Selenium for Automated Functional Testing
	Selenium By Example: a GitHub Scraper

	Prevalence of Selenium Tests
	Large-Scale Corpus of Projects that use Selenium
	Research Method
	Results
	Threats to Validity

	Quantitative Analysis of Test Changes
	High-quality Corpus of Projects that use Selenium
	Project-specific Change Histories
	Corpus-Wide Commit Activity Metrics
	Research method
	Results
	Threats to Validity

	Corpus-wide Maintenance Metrics
	Research Method
	Results
	Threats to Validity

	Qualitative Analysis of Test Changes
	Research Method
	Automating the Categorization of Test Changes
	Ekeko, a Program Query Language
	Qwal, a Graph Query Language
	ChangeNodes, a JDT Change Distiller
	Classifying Changes using the Extended QwalKeko

	Results
	Threats to Validity

	Related Work
	Conclusions and Future Work
	References

