
Extraction of Conditional Statements for
Understanding Business Rules

Tomomi Hatano∗, Takashi Ishio∗, Joji Okada†, Yuji Sakata† and Katsuro Inoue∗
∗Graduate School of Information Science and Technology, Osaka University

1-5, Yamadaoka, Suita, Osaka 565-0871, Japan
Email: {t-hatano,ishio,inoue}@ist.osaka-u.ac.jp

†NTT DATA Corporation, Research and Development Headquarters, Center for Applied Software Engineering
Toyosu Center Building Annex, 3-9, Toyosu 3-chome, Koto-ku, Tokyo 135-8671, Japan

Email: {okadaju,sakatayu}@nttdata.co.jp

Abstract—In the maintenance of a business system, developers
must understand the computational business rules implemented
in the system. Computational business rules de�ne how an
output value of a feature is computed from inputs; the rules
are represented by conditional statements in the source code.
Unfortunately, understanding business rules is a tedious and
error-prone activity. Since a feature computes various outputs,
developers must analyze the implementation of the feature and
extract the conditional statements relevant to a particular output.
In this paper, we propose a program dependence analysis tech-
nique tailored for understanding business rules. Given a variable
representing an output, our approach extracts conditional state-
ments that may affect the computation of the output. To evaluate
the usefulness of the approach, we conducted an experiment with
eight developers in a company. The results showed that our
approach enables developers to accurately identify conditional
statements relevant to business rules.

I. INTRODUCTION

In the maintenance of a business system, developers must
understand computational business rules implemented in the
system [1]. Computational business rules de�ne how the output
of a feature is computed from inputs. An output value is
affected by conditional statements, e.g., nested if statements
in the feature source code. The rules are often described by a
table listing all possible output values and their corresponding
conditions.

Understanding computational business rules is a tedious
and error-prone activity for two main reasons [2]. First, doc-
umentation describing the rules is generally lost, outdated,
or otherwise unavailable. Second, a feature of a system may
compute multiple outputs. For each output, developers are
required to answer a question: which conditional statements are
relevant to this output value? The developers must then analyze
the implementation of the feature and extract the relevant
conditional statements in order to understand the business rules

Backward program slicing [3] is used to understand busi-
ness rules [2], [4], [5], [6], [7]. Cosentino et al. [2] propose
an application of program slicing to extract statements relevant
to business rules that compute a particular variable. However,
they report that the extracted statements may include con-
ditional statements that are irrelevant to the business rules.
The irrelevant statements are called technical statements in [2]
because they often check if system resources, such as a data �le
or a database connection, are available for executing a feature.

The technical statements themselves do not affect the output
directly, although they do decide whether the computation is
executed. Program slicing extracts both types of conditional
statements since it does not differentiate between the two.
Sneed et al. [8] conclude that techniques for data �ow analysis
and for extracting partial paths are required for understanding
business rules.

We propose a program dependence analysis technique
tailored for understanding computational business rules. Given
a variable representing an output, our approach extracts con-
ditional statements that may affect the computation of the
value of the variable. To exclude technical statements from
the analysis, we use a partial control-�ow graph, every path
of which outputs a computed result. In addition, we ensure
the speci�ed variable is data dependent on a statement that is
directly or transitively dependent on the extracted conditional
statements.

We have evaluated whether this approach actually con-
tributes to the performance of developers investigating business
rules. The evaluation was a controlled experiment based on an
actual process in a company. Eight subjects in the company
were asked to identify conditional statements relevant to busi-
ness rules for a system output. The results showed that our
approach enables developers to more accurately identify con-
ditional statements relevant to business rules, without affecting
the time required for the task.

The contributions of the paper are summarized as follows.

• We propose a program dependence analysis technique
for understanding business rules. Our approach is
a variant of program slicing that excludes technical
statements.

• We evaluate our technique by conducting an exper-
iment involving eight industrial experts. To the best
of our knowledge, this is the �rst study to apply an
automated extraction technique to experts’ tasks in
business rule reverse engineering.

The rest of the paper is organized as follows. Section II pro-
vides a motivating example. Sections III and IV, respectively,
describe and evaluate our approach. Section V lists related
work. Section VI describes the conclusion and future work.

2014 6th International Workshop on Empirical Software Engineering in Practice

978-1-4799-6666-0/14 $31.00 © 2014 IEEE

DOI 10.1109/IWESEP.2014.14

25

TABLE I: Tables representing computational business rules for
the fee and time limit

(a) fee
values conditions

5 children
10 students
15 adults

(b) time limit
values conditions

3 premium members
2 no members

II. MOTIVATING EXAMPLE

Throughout this paper, we use an example feature that
includes the business rules of an imaginary facility. The feature
computes a usage fee and a time limit for the facility. The
charge is 15 dollars for adults, 10 dollars for students, and 5
dollars for children. The time limit is 2 h for regular members
and 3 h for premium members. Tables I(a) and I(b) describe the
computations for the fee and time limit, respectively. Children
may not become premium members.

The feature is implemented by a single method in Figure 1.
The method action takes two variables as input: status,
representing a user type (child / student / other), and member,
representing whether the user is a premium member. The
method computes two output variables corresponding to a
usage fee and a time limit. The output variables are represented
by the parameters of the setFee and setHour methods.

The method action comprises three steps. The �rst step
checks whether the database access at line 2 produced an error.
The second step computes an output fee from lines 5 through
14, following the rules shown in Table I(a). Lines 7 through 9
examine a constraint between two input variables and cancel
the computation if the constraint is violated. The third step
computes an output hour at lines 15 through 18, following the
rules shown in Table I(b).

Developers maintaining the system must recover Tables I(a)
and I(b) from the source code in Figure 1 in order to un-
derstand the computational business rules of the feature. To
recover the tables, developers must answer the question: Which
conditional statements are relevant to the values passed to
setFee and setHour?

Backward program slicing appears to be a promising tool
to answer the question. A program slice is computed using
a program dependence graph. This graph is a directed graph
in which the vertices represent all executable statements in a
program; the edges represent the control and data dependencies
among the statements. These dependencies are computed using
a control-�ow graph. Figure 2a shows a control-�ow graph of
the method in Figure 1.

In the graph, each node has a label indicating its corre-
sponding line number. In a control-�ow graph, a statement
s2 is control dependent on a statement s1, if s1 determines
whether s2 is executed. For example, lines 5 and 6 are control
dependent on line 2, because line 2 has another control-�ow
path that reaches the exit of the method without visiting lines
5 and 6. A statement s2 is data dependent on a statement s1,
if s2 may use a variable whose value is de�ned by s1. For
example, line 14 is data dependent on line 5 because the value
assigned at line 5 is used at line 14, if the execution passes
through lines 6, 11, and 14. Figure 2b shows the resultant

public void action(int status, boolean member) {
 if (hasError()) { // irrelevant
 return;
 }
 int fee = 15;
 if (status == STAT_CHILD) { // relevant to setFee
 if (member) { // irrelevant
 return;
 }
 fee = 5;
 } else if (status == STAT_STUDENT) { // relevant to setFee
 fee = 10;
 }
 setFee(fee);
 setHour(2);
 if (member) { // relevant to setHour
 setHour(3);
 }
 return;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Fig. 1: An example method implementing business rules

program dependence graph of the method. A backward slice
with respect to a variable used in a statement is the set of
vertices that are reachable from the vertex representing the
statement by backward traversal via edges.

Although backward program slicing extracts all statements
that may affect a given variable, it cannot answer the question
of which statements are relevant to the given variable. For
example, a backward program slice with respect to the variable
fee at line 14 includes four conditional statements (lines 2, 6,
7, and 11) that may be executed before line 14. However,
only lines 6 and 11 are relevant to the computational business
rules for fee, since the variable is assigned by statements
controlled by those statements. On the other hand, lines 2 and
7 are irrelevant to the rules in Table I(a) since they represent
conditions to decide whether the feature is executed.

Similarly, we can extract statements that may affect a
parameter passed to setHour at lines 15 and 17, by computing
the union of program slices with respect to the lines (a decom-
position slice [9]). However, the resultant slice includes four
conditional statements at lines 2, 6, 7, and 16. The statement at
line 16 is relevant to the computational business rules for the
parameter, while the other statements are irrelevant. As demon-
strated in these examples, program slicing does not distinguish
conditional statements that are relevant to the business rules
from other conditional statements. Consequently, developers
must manually extract the conditional statements relevant to
the computational business rules for the output.

III. OUR APPROACH

Our approach is a program dependence analysis of a
single method in a Java program, where we analyze data
dependencies caused by method calls in the method. Our
approach takes two inputs: method m that implements the
business rules to be analyzed and a setter method s called in
m that receives the output of the business rules. Our approach
extracts the conditional statements in m that are relevant to
s. A conditional statement c is relevant to s, if c directly or
transitively affects a statement that determines an argument for
method s. Conditional statements which are not relevant to s

26

11

12

2

10

6

7

Entry

17

16

15

5

14

return

(a)

11

12

Entry

2

10

6

7

14

control dependence
data dependence

5

15 16

17

conditional statement

invocation of a method

other statement

control-flow

(b)

Fig. 2: A control-�ow graph (a) and program dependence graph
(b) of Figure 1

include technical statements and statements relevant to other
setter methods.

Our approach comprises three steps.

1) Extract a control-�ow graph (CFG) of the method m
and its subgraph Gs related to s.

2) Extract control dependence edges in the CFG and Gs

and data dependence edges in Gs.
3) Extract relevant conditional statements from method

m using control-�ow, control dependence, and data
dependence edges.

Our approach uses a call graph for the entire program to
identify method call instructions in m that invoke s and to
perform data dependence analysis on method calls in m. We
use variable-type analysis [10] for our implementation.

A. Control-Flow Analysis

This step constructs a CFG from the bytecode of m, and
extracts its subgraph such that every path from the entry point
invokes s. A CFG is a directed graph in which the vertices
VCFG represent all bytecode instructions of m and the edges
CF represent control-�ow paths [11]. Let S be the set of
instructions invoking s. Subgraph Gs has vertices Vs and edges
CFs formulated as follows.

Vs = {v ∈ VCFG | ∃s ∈ S : v
CF∗−−−→ s}

CFs = {(v1, v2) ∈ CF | v1 ∈ Vs ∧ v2 ∈ Vs}

x
E−→ y denotes there exists an edge from x to y in E (i.e.,

(x, y) ∈ E). x E∗−−→ y denotes there exists a path from x to y

through edges in E. Note that x E∗−−→ x.

11

12

2

10

6

7

Entry

5

14

11

12

2

10

6

7

Entry

17

16

15

5

14

11

12

Entry

2

10

6

7

14 5

(a)

(b)

(c)

Fig. 3: Three graphs to extract conditional statements: (a) is a
subgraph of Figure 2a for setFee (line 14). (b) is a dependence
graph extracted from (a). (c) is a subgraph of Figure 2a for
setHour (lines 15 and 17).

Figure 3a shows an example subgraph of the CFG in
Figure 2a with respect to setFee. For simplicity, the vertices in
Figure 3 represent executable statements and their line numbers
in the program although actual vertices of our implementation
represent bytecode instructions. While vertices 2 and 7 have
branches in the CFG, they have no branches in the subgraph.
Thus, the conditional statements corresponding to the vertices
are not relevant to the computational business rules for fee in
Section II.

B. Dependence Analysis

This step extracts data dependence edges (DDs) and two
kinds of control dependence edges (CD and CDs). CD
is the set of control dependence edges extracted from the
CFG of m. CDs and DDs are sets of control dependence
and data dependence edges extracted from the subgraph Gs.
In addition to the de�nition of dependence representations
given by Horwitz et al. [12], we extract the following data
dependence edges.

1) Constant values: A constant value used in a statement
is independent of other statements. However, we de�ne a data
dependence edge between a bytecode instruction that loads
a constant value and another instruction that uses the value.

27

For example, the statement at line 17 comprises two bytecode
instructions: the instruction that loads the constant value 3
and the instruction that invokes setHour. There exists a data
dependence edge between the two. This data dependence is
introduced to identify a conditional statement that controls
method call statements using different constant values.

2) Field and array variables: Suppose an instruction i1
de�nes the value of a �eld variable (or an element of an array
variable) and another instruction i2 uses the value of the �eld
variable (or element of an array variable). There exists a data
dependence edge from i1 to i2 if i1 and i2 may access the
same �eld (or the same array). Each �eld is identi�ed by class
name and �eld name considering class hierarchy. Each array
is identi�ed by its type.

3) Invocations of methods: Suppose instructions i1 and i2
invoke methods. There exists a data dependence edge from i1
to i2 if the following condition holds.

Def(i1) ∩ Use(i2) �= ∅
where Def(i1) is the set of �eld and array variables that may
be de�ned by methods (directly or transitively) invoked from
the instruction i1. Use(i2) is the set of �eld and array variables
that may be used by methods (directly or transitively) invoked
from i2. For a conservative analysis, we assume that library
methods that are not included in the target program may de�ne
and use all �eld and array variables in the program.

C. Extracting conditional statements

Using the computed dependence edges, this �nal step
extracts the set of relevant conditional statements R from m
as follows.

R = CV ∪OW

CV = {c | ∃s ∈ S, ∃d ∈ Vs : c
(CDs∪DDs)∗−−−−−−−−−→ d

DDs−−−→ s}
OW = {c | ∃s1, s2 ∈ S, ∃d ∈ Vs : s1

CFs∗−−−→ c ∧
c

(CD∪DDs)∗−−−−−−−−→ d
DDs−−−→ s2}

CV represents the set of conditional statements that may affect
statements passing values to s. Each element of CV directly
or transitively affects an instruction that provides data to s.
OW represents the set of conditional statements that decide
whether a value set by s1 is overwritten by another value at
s2. Since a conditional statement affects an output even if it
decides not to execute s2, we use CD instead of CDs for the
de�nition of OW .

Figure 3b shows a dependence graph of the program in
Figure 1 when setFee is speci�ed as s (i.e., S = {14}).
The conditional statements at lines 6 and 11 are extracted
as relevant statements since they hold the condition of CV .
Figure 3c shows a subgraph when setHour is speci�ed as s
(i.e., S = {15, 17}). The conditional statement at line 16 is
extracted as a relevant statement since it holds the condition
of OW . The conditional statements at lines 2 and 7 are not
extracted since they do not hold the conditions of either CV or
OW ; nor do they satisfy the condition of CV since they have
no dependence edge to other vertices. Furthermore, they do
not satisfy the condition of OW since they are not reachable
from setFee or setHour.

R may include truly irrelevant statements since our ap-
proach uses only dependencies among instructions. If several
assignment statements pass the same value to s, conditional
statements that select one of those statements are irrelevant to
the output. However, our approach regards such conditional
statements as relevant to the output.

Our implementation supports two techniques for providing
the extracted conditional statements to developers. The �rst
one is code comments. Our tool adds code comments to
conditional statements as shown in Figure 1. Since developers
are required to analyze the same method m for each output
variable, an irrelevant statement for one variable may be
relevant for another. Developers may use code comments gen-
erated for several variables to understand the entire structure
of the method. The second technique is a CSV �le. Our tool
outputs a �le listing all the conditional statements in a speci�ed
method m and indicating whether each statement is relevant
or not. Developers may record the progress of investigation in
the generated �le.

IV. EVALUATION

Developers must examine the source code of a feature
to understand the computational business rules, even if the
relevant conditional statements are extracted by our technique.
In order to evaluate whether our technique can help developers
identify relevant conditional statements, we conducted a con-
trolled experiment using human subjects. We formulated the
following research questions.

RQ1 Can our technique help developers accurately
identify conditional statements relevant to com-
putational business rules?

RQ2 Can our technique reduce the time needed to
identify relevant conditional statements?

RQ3 To what degree do the results of our technique
differ from those of the developers’ investigation?

A. Experimental Setup

1) Subjects: We recruited eight reverse engineering experts
from a company. They had been engaged in reverse engi-
neering for at least a year. Their Java experience was widely
distributed from 0.5 to 12 years, with a median of a year. No
subject was familiar with the target system.

2) Tasks: The tasks used in our experiment were created
from MosP 4.0.01, an attendance management system. Two
methods, m1 and m2, were randomly selected from the longest
methods whose conditional statements could not be removed
by program slicing. Table II shows the details of the two
methods. Column |C| represents the number of all conditional
statements in m. Column |Cs| represents the number of condi-
tional statements located prior to a setter method call s in the
source code of m. All conditional statements were extracted
by program slicing with respect to each setter method. Column
|R| indicates the number of conditional statements extracted
by our technique.

For each task, the subjects were given the following.

• Eclipse IDE including the source code of the system.
1http://sourceforge.jp/projects/mosp/releases/53354

28

TABLE II: Target methods

ID Methods LOC |C| |Cs| |R|
T1 m1 = getPaidHolidayDataDto 101 17 12 7

s1 = setAcquisitionDate

T2 m2 = chkWorkOnHolidayInfo 152 23 23 15
s2 = setPltWorkType

TABLE III: Task assignment

Task 1 Task 2
Subject Target Our approach Target Our approach

1, 2 T1 Yes T2 No
3, 4 T1 No T2 Yes
5, 6 T2 Yes T1 No
7, 8 T2 No T1 Yes

• Target method m and the setter method s to be
analyzed.

• Spreadsheet including all conditional statements and
their line numbers in m.

The subjects performed one task with our technique and
the other task without our technique. Table III shows the tasks
assigned to the subjects. The results of our technique were
provided to the subjects by annotating conditional statements
in the source code (as shown in Figure 1) and in a spreadsheet.
A subject working without our technique received a list of
conditional statements in a spreadsheet without annotation. A
program slice was not explicitly provided because it includes
all the conditional statements located prior to s.

Each task comprised two subtasks that are typical reverse
engineering processes in the company. In the �rst subtask, the
subjects classi�ed each conditional statement as either relevant
or irrelevant and wrote the result into a given spreadsheet. In
the second subtask, they used the results of the �rst subtask to
create a table of the computational business rules. Each task
is limited to 2 h. The results of the second subtask were used
to determine the correct answer of the �rst subtask.

3) Procedure: At the beginning of the experiment, the
subjects were given the following information: (1) the purpose
of the experiment, (2) a summary of our technique, (3) the
process of the task, (4) an exercise in MosP using an example
task, and (5) an explanation of the answer of the example
task. The subjects performed their tasks independently after
the introduction.

After all the tasks had been completed, the subjects dis-
cussed the correct answer with the third author, who is also a
reverse engineering expert in the company. Since they reached
agreement on the computational business rules in the tasks, we
used the results to evaluate the accuracy of the subjects.

B. Results

1) RQ1 Can our technique help developers accurately iden-
tify conditional statements relevant to computational business
rules?: The left box plot in Figure 4 compares the accuracy
of the developers’ classi�cation of conditional statements. The
accuracy is the ratio of the number of correctly classi�ed

with
 our approach

without
 our approach

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

ur
ac

y

with
 our approach

without
 our approach

2000

3000

4000

5000

Ti
m

e[
s]

Fig. 4: Comparison of the accuracy and time for tasks

public void foo(int i) {
 if (i == 0) {
 setX(10);
 } else if (i == 1) {
 setX(20);
 }
 return;
}

Entry

i == 0 setX(10)

i == 1 setX(20)

Entry

combined
conditions

setX(10) setX(20)

i == 0 i == 1

Sample code Our approach Developers

Fig. 5: The difference between our approach and developers

conditional statements against the total number of conditional
statements in the method. We observed that developers sup-
ported by our technique classi�ed conditional statements more
accurately. A Wilcoxon rank sum test showed the difference
was statistically signi�cant (the p-value was 0.0148). Further-
more, Cohen’s d = 0.846 showed the difference was large
[13]. The improvement was achieved because subjects without
our technique tend to accidentally misclassify conditional
statements as irrelevant. Our technique enabled subjects to
carefully investigate such relevant conditional statements by
identifying irrelevant conditional statements. We concluded
that our approach enabled the developers to accurately iden-
tify conditional statements relevant to computational business
rules.

2) RQ2 Can our technique reduce the time needed to
identify relevant conditional statements?: The right box plot
in Figure 4 compares the time spent to complete the task with
and without our technique. Although developers supported by
our technique took less time than those without our technique,
the difference was not statistically signi�cant (the p-value was
0.6454). This is because the subjects read the entire source
code of the methods to understand business rules. Even if
relevant conditional statements are automatically extracted,
they must verify what conditions are represented in those
statements. We conclude that our technique does not affect
the time for investigating source code and creating tables.

3) RQ3 To what degree do the results of our technique
differ from those of the developers’ investigation?: The set of
relevant conditional statements created during the discussion

29

with the subjects included 17 statements. Fourteen of the
original 22 statements were extracted by our technique and
the remaining three conditional statements were missed by our
technique. Hence, the recall and the precision of our technique
are 0.82 (14/17) and 0.64 (14/22), respectively. Our technique
included eight statements that were classi�ed as irrelevant by
the subjects, because of a simple conservative analysis for
library methods. The conditional statements would be excluded
if a more precise analysis was implemented.

Our technique missed three conditional statements because
of a difference between actual dependence and conceptual
dependence. A simpli�ed example is shown in Figure 5. In
the source code, two conditional statements, if (i == 0) and if
(i == 1), determine a value passed to the method setX. Our
approach classi�ed the former statement as relevant and the
latter statement as irrelevant, because the former statement
determined the parameter: 10 is passed if i == 0 and 20 other-
wise. On the other hand, developers classi�ed both conditional
statements as relevant since they subconsciously regarded the
two consecutive statements as a single control-�ow structure.

We determined that our technique can extract conditional
statements without missing relevant statements by regarding
consecutive conditional statements as a combined statement
as shown in the right side of Figure 5. Although conditional
statements extracted by this approach may include irrelevant
statements, the approach is expected to reduce the develop-
ers’ identi�cation time since they only need to consider the
extracted statements without inspecting the other conditional
statements.

V. RELATED WORK

Various techniques to extract computations from source
code have been proposed. The frameworks to extract business
rules are proposed [2], [4], [5], [6]. They represent computa-
tions of business variables using program slicing techniques.
Our analysis technique excludes irrelevant statements that are
extracted by these techniques. Moreover, we have evaluated
the ability of our technique to assist developers.

Pichler [14] proposed a symbolic execution technique to
extract computations from a Fortran program. Their technique
requires actual test cases from a target system, while our
approach does not assume the existence of test cases. Dubinsky
et al. [15] propose a method to identify business rules in
the code and �nd the code locations. The method relies on
business terms in the code and comments while we use only
dependencies among statements. Thin slicing [16] extracts
only assignment statements that de�ne an output value and
excludes all conditional statements from a slice. Our technique
extracts conditional statements that depend on assignment
statements. Decomposition slicing [9] extracts all statements
that may affect the assignment statements of a particular
variable. Since a decomposition slice is computed by the
union of traditional program slices, it includes conditional
statements that are irrelevant to business rules as described in
our motivating example. As a variant of program slicing, our
approach is related to amorphous slicing [17]. Amorphous slic-
ing summarizes the computations of a particular variable while
retaining the semantics of the original program. Our approach
extracts conditional statements relevant to the computations

of a particular variable while ignoring irrelevant control-�ow
paths; therefore, it does not preserve the semantics.

VI. CONCLUSION AND FUTURE WORK

We have proposed a program dependence analysis tech-
nique tailored for understanding computational business rules.
Our approach extracted conditional statements that were rele-
vant to an output value. We conducted a controlled experiment
to evaluate whether or not the approach actually contributed to
the performance of the developers. We found that our approach
enabled developers to more accurately identify conditional
statements relevant to computational business rules.

In future work, we would like to support conceptually re-
lated conditional statements as described in Section IV-B3. We
are also interested in the interprocedural analysis of business
rules scattered across several methods. Finally, we plan to
apply our approach to other enterprise systems to evaluate the
effectiveness of our approach.

ACKNOWLEDGMENT

We would like to thank the subjects who participated in
this study. This work was supported by JSPS KAKENHI
Nos.25220003 and 26280021.

REFERENCES

[1] K. Wiegers and J. Beatty, Software Requirements, 3rd ed. Miscrosoft
press, 2013.

[2] V. Cosentino, J. Cabot, P. Albert, P. Bauquel, and J. Perronnet, “Ex-
tracting business rules from COBOL: A model-based framework,” in
Proc. WCRE, 2013, pp. 409–416.

[3] M. Weiser, “Program Slicing,” IEEE Trans. Softw. Eng., vol. SE-10,
no. 4, pp. 352–357, 1984.

[4] X. Wang, J. Sun, and X. Yang, “Business rules extraction from large
legacy systems,” in Proc. CSMR, 2004, pp. 249–253.

[5] H. Huang and W. Tsai, “Business rule extraction from legacy code,” in
Proc. COMPSAC, 1996, pp. 162–167.

[6] V. Cosentino, J. Cabot, P. Albert, P. Bauquel, and J. Perronnet, “A
Model Driven Reverse Engineering Framework for Extracting Business
Rules out of a Java Application,” in Proc. RuleML, 2012, pp. 17–31.

[7] H. Sneed, “Extracting business logic from existing COBOL programs
as a basis for redevelopment,” in Proc. IWPC, 2001, pp. 167–175.

[8] H. Sneed and K. Erdos, “Extracting business rules from source code,”
in Proc. WPC. IEEE Comput. Soc. Press, 1996, pp. 240–247.

[9] K. B. Gallagher and J. R. Lyle, “Using program slicing in software
maintenance,” IEEE Trans. Softw. Eng., vol. 17, no. 8, pp. 751–761,
1991.

[10] V. Sundaresan and L. Hendren, “Practical virtual method call resolution
for Java,” in Proc. OOPSLA, 2000, pp. 264–280.

[11] F. Allen, “Control �ow analysis,” ACM Sigplan Notices, vol. 5, no. 7,
pp. 1–19, 1970.

[12] S. Horwitz, J. Prins, and T. Reps, “Integrating non-interfering versions
of programs,” ACM TOPLAS, vol. 11, no. 3, pp. 345–387, 1989.

[13] J. Cohen, “Statistical power analysis,” Current Directions in Psycho-
logical Science, vol. 1, no. 3, pp. 98–101, 1992.

[14] J. Pichler, “Speci�cation extraction by symbolic execution,” in Proc.
WCRE, 2013, pp. 462–466.

[15] Y. Dubinsky, Y. Feldman, and M. Goldstein, “Where is the business
logic?” in Proc. ESEC/FSE, 2013, pp. 667–670.

[16] M. Sridharan, S. J. Fink, and R. Bodik, “Thin slicing,” in Proc. PLDI,
2007, pp. 112–122.

[17] M. Harman, D. Binkley, and S. Danicic, “Amorphous program slicing,”
Journal of Systems and Software, vol. 68, no. 1, pp. 45–64, Oct. 2003.

30

