
VOL. E98-D NO. 3
MARCH 2015

The usage of this PDF file must comply with the IEICE Provisions
on Copyright.
The author(s) can distribute this PDF file for research and
educational (nonprofit) purposes only.
Distribution by anyone other than the author(s) is prohibited.

IEICE TRANS. INF. & SYST., VOL.E98–D, NO.3 MARCH 2015
627

PAPER

Method Verb Recommendation Using Association Rule Mining in a
Set of Existing Projects

Yuki KASHIWABARA†a), Nonmember, Takashi ISHIO†, Member, Hideaki HATA††, Nonmember,
and Katsuro INOUE†, Fellow

SUMMARY It is well-known that program readability is important for
maintenance tasks. Method names are important identifiers for program
readability because they are used for understanding the behavior of meth-
ods without reading a part of the program. Although developers can create
a method name by arbitrarily choosing a verb and objects, the names are
expected to represent the behavior consistently. However, it is not easy for
developers to choose verbs and objects consistently since each developer
may have a different notion of a suitable lexicon for method names. In this
paper, we propose a technique to recommend candidate verbs for a method
name so that developers can use various verbs consistently. We recom-
mend candidate verbs likely to be used as a part of a method name, using
association rules extracted from existing methods. To evaluate our tech-
nique, we have extracted rules from 445 open source projects written in
Java and confirmed the accuracy of our approach by applying the extracted
rules to several open source applications. As a result, we found that 84.9%
of the considered methods in four projects are recommended the existing
verb. Moreover, we found that 73.2% of the actual renamed methods in six
projects are recommended the correct verb.
key words: software readability, recommendation, method name, associa-
tion rule

1. Introduction

It is well-known that program readability is very important
for maintenance tasks [1]. In software development, main-
tenance tasks occupy 80% of the software life cycle [2] and
maintenance cost represents the true cost of software [3]. In
performing the maintenance task, developers spend consid-
erable time reading a program [4]. Consequently, high pro-
gram readability leads to reduced maintenance cost.

An identifier is a crucial element for program readabil-
ity [5]–[7]. The quality of identifiers affects program read-
ability [5], [6]. Developers take a considerably longer time
to understand a program if the identifiers poorly represent
their roles in the program [6]. It is important to give easily
recognized names to identifiers.

In identifiers, method names contribute to program
readability because the names are used for understanding
the behavior of the methods without reading the program.
According to several guidelines for an object-oriented pro-
gram [8]–[10], a method name generally consists of a verb

Manuscript received August 11, 2014.
Manuscript revised November 25, 2014.
Manuscript publicized December 16, 2014.
†The authors are with the Osaka University, Suita-shi, 565–

0871 Japan.
††The author is with the Nara Institute of Science and Technol-

ogy, Ikoma-shi, 630–0192 Japan.
a) E-mail: k-yuki@ist.osaka-u.ac.jp

DOI: 10.1587/transinf.2014EDP7276

and objects and should represent its behavior consistently
throughout a program. Even if classes and methods are
designed beforehand by an expert, developers may have to
name private methods by themselves [11]. It is not easy for
developers to choose verbs and objects consistently because
each developer may have a different notion of a suitable lex-
icon for method names.

An inconsistent method name may create confusion for
a developer. Figure 1 shows an example. In Java, a setter
method is expected to update a field of an object. However,
the code fragment gets a stream object from a blob object
by calling the setBinaryStream method. The state of the
blob object is updated by method calls to the stream object.

An integrated development environment IntelliJ∗ sup-
ports naming for well-known verbs that are already used
consistently among developers. For example, it is well-
known that get and set are used to represent accessor
methods to read and update a field variable, respectively.
The verb test is used to represent a unit test method for
JUnit. If a method returns a boolean value, an asking verb
or an auxiliary verb such as is or can will often be used for
the method name. However, in the case of other verbs, it is
not known when and which verbs should be used to name a
method.

There are several techniques to recommend better
verbs for a method name. In previous work, Karlsen et
al. [12] implemented a naming bug detection tool based
on naming rules extracted by their prior studies [3], [13].
Their tool accurately points out inappropriate verbs used for
a method and recommends more appropriate verbs to the
method. However, their tool is appropriate for naming bug
detection only for limited methods by using a particular, nar-
row set of verbs. Shusi et al. proposed a technique to recom-
mend a verb for a method name using machine learning [14].
Although their approach is applicable to many methods, and

Fig. 1 A part of t createBlob Client method defined in TestConnection-
Methods class in Derby 10.2.2.0.

∗http://www.jetbrains.com/idea/

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers

628
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.3 MARCH 2015

treats many verbs using a probability model, it does not
explain why a verb is recommended. Only the probability
value that a verb is most suitable is provided to a developer.

In this paper, we propose a technique to recommend
candidate verbs for a method name so that developers can
consistently use various verbs. We extract the relationship
between verbs in method names and identifiers in methods
from existing source files by using association rule min-
ing [15]. We assume that the behavior of a method is often
characterized by identifiers such as method calls and field
access in the methods. Using the extracted rules, we recom-
mend candidate verbs likely to be used as a part of a method
name, along with the reason of recommendation: e.g., if a
method calls next, hasNext, iterator, and equals, then
find is likely to be a verb representing the behavior. Our
approach can be used after the implementation phase and
before the maintenance phase to improve program readabil-
ity.

We have extracted association rules from 445 open
source projects written in Java and conducted two experi-
ments to confirm the accuracy of our approach by apply-
ing three kinds of projects. The first experiments applied
the rules to 1) the training data set and 2) four projects to
confirm the accuracy of rule extraction. The second round
of experiments applied rules to actual renamed methods in
3) six projects to confirm the accuracy of verb recommenda-
tion. As a result, 1) naming association rules were extracted
from 84.5% of methods in training data set, and covered 230
verbs. 2) We found that 84.9% of the considered methods in
four projects are recommended the existing verb. We have
identified three meaningful groups of rules for verb recom-
mendation. 3) We found that 72.4% of the renamed methods
in six projects are recommended the correct verb and 51.5%
of the renamed methods are recommended the correct verb
at a higher rank than the verb prior to the change.

The main contributions of this paper are as follows:

- We have defined an application of association rule min-
ing to extract relationships between verbs used in
method names and identifiers in methods.

- We have shown that association rules extracted from
open source projects are applicable to the recommen-
dation of candidate verbs for methods in different ap-
plications.

- We have shown that the technique could recommend cor-
rect verbs for 72.4% of the existing methods covered by
our approach.

This paper is a revised version of [16]. This paper in-
cludes an additional experiment that compares the result of
our technique with actual methods renamed by developers.
In addition, we have updated our tool with refined heuris-
tics. Therefore, the result reported in this paper is different
from that report.

The rest of this paper is organized as follows: Sect. 2
explains the related works of our research. Section 3 de-
scribes our approach to recommending candidates verbs.
Section 4 shows the result of our experiment. Section 5 dis-

cusses threats to the validity of the proposed approach and
the experiment. Section 6 presents the conclusions and fu-
ture work.

2. Related Work

2.1 Rename Refactoring

Refactoring is used to improve software quality [17]. Refac-
toring is defined as the process of changing a software sys-
tem in such a way that it does not alter the external behavior
of the code, yet improves its internal structure [18]. Refac-
toring is one of the most important and commonly used tech-
niques for improving software quality [19].

There are several tools used to automatically execute
refactoring. For example, IntelliJ and Eclipse contain the
function as plug-ins. Murphy-Hill et al. researched the
refactoring behavior of programmers in [20]. Their data
indicated that developers actually used tools for automatic
refactoring. Bavota et al. concluded that the refactoring has
less to do with the percentage of faults [21]. Bavota et al.
suggested that developers should conduct automatic refac-
toring using tools rather than manual refactoring [21].

Opdyke et al. reported that renaming is one of the most
commonly used refactorings [22]. Arnaoudova et al. [23]
noted that 39% of 71 developers of industrial or open source
systems perform refactoring from a few times per week to
almost every day and 46% perform refactoring only a few
times per month. Moreover, they analyzed identifier renam-
ing across versions of a program and showed that method
names are renamed more frequently than other identifiers.
Consequently, it is important to support method renaming.

2.2 Method Naming

Both Abebe et al. and Arnaoudova et al. defined bad patterns
of identifiers and implemented detectors for those patterns.
Abebe et al. defined “lexicon bad smells” for identifier nam-
ing [24]. Lexicon bad smells are potential structural prob-
lems of identifiers caused by the naming itself or the relation
among identifiers. Arnaoudova et al. defined anti-patterns
for identifier naming [25]. The anti-patterns are represented
by the relationships among the signature of a method, iden-
tifiers involved in the method body, and the comment of the
method. Neither research group considered an appropriate
and concrete lexicon for identifier names.

Høst et al. analyzed the relationship between the
behavior of methods and the verbs used in the method
names [13]. For each verb, they analyzed the typical behav-
ior of methods including the verb in their names. They de-
fined traceable attributes such as “create objects” and “con-
tains loop” to represent the behavior of methods. Finally,
they reported the typical behavior for 40 concrete verbs. The
following is a quote from their rules:

find: Methods named find very often use local
variables and contain loops. Furthermore, they of-
ten perform type-checking, and rarely return void.

KASHIWABARA et al.: METHOD VERB RECOMMENDATION USING ASSOCIATION RULE MINING IN A SET OF EXISTING PROJECTS
629

On the basis of the above study, Høst et al. proposed
a technique that highlights the naming bugs of methods to
developers and that provides suggestions as to how to fix
the naming bugs [3]. The technique is implemented as a
tool by Karsen et al. [12]. This tool points out that a target
method has a naming bug, if the method’s name has very lit-
tle correspondence with the rule. Although the technique is
highly accurate for naming bug detection, developers can re-
ceive support for only a limited number of methods whose
names are covered by 76 method name patterns using 64
verbs. Each method name pattern is associated with a sin-
gle usage rule. The technique is hard to cover various verbs,
because a verb may be used in many ways according to the
local definition or idiosyncrasies [24]. In our work, we use
association rule mining to cover a large number of verbs and
to apply the approach to many methods. Our approach help
developers to consistently use verbs in addition to changing
inappropriate verbs used in method names.

Shusi et al. proposed a technique to recommend a verb
for a method name using a machine learning technique [14].
They classified methods using support vector machine. The
classifier regards each verb of a method name as a label of
a clustering. Although it can be applied to various methods,
developers still have to verify the resultant verb by them-
selves. We use a rule mining approach to provide rules be-
tween method contents and names so that developers can
understand why a verb is recommended.

Suzuki et al. proposed a technique to recommend
method objects using an n-gram model [26]. They recom-
mended a word that is likely to be added to the end of a
method name, using the conditional probability extracted
from existing method names. Their approach cannot rec-
ommend the first word for a method, whereas our technique
can. We consider that we may recommend whole method
names in combination with their approach.

3. Proposed Approach

We recommend candidate verbs for a method name using
association rule mining. The proposed approach consists
of two steps. The first step extracts naming association
rules from verbs used in method names and the identifiers
in methods. The second step applies the rules to recom-
mend verbs for a method name. We call the extracted rules
naming association rules.

3.1 Extraction of Naming Association Rules

In this step, our approach extracts naming association rules
from a training data set using association rule mining. As-
sociation rule mining [15] is a technique used for extracting
association rules from a large number of sets of items. A
set of items is called a transaction. An association rule can
be denoted as (X,Y, c, s). This expression represents that,
if a transaction contains all items in X, then the transaction
likely contains items in Y. X is called the antecedent of the
rule, Y is called the consequent of the rule. c is a confi-

dence value, which is the conditional probability of Y given
X; s is a support value, which is the number of transactions
that fulfill the rule. In this paper, a training data set repre-
sents a set of existing projects. To that end, our approach
takes methods from a training data set, translates methods
to transactions, and extracts naming association rules from
transactions.

First, our approach takes methods M from source files
in the training data set. We create an AST-tree for each
source file and extract M from the source files. We split
method names by using camelCase and snake case heuris-
tics like [25]. We exclude the following methods from M.

abstract methods: These methods have very few informa-
tion for recommendation.

main methods and constructors: These names are de-
fined by a Java language specification.

methods defined in anonymous inner class: Most of
these methods are inherited from parent classes.

get and set methods: Both get and set are well-known
verbs for field access methods.

test methods: The verb test is also well-known for the
JUnit testing framework.

toString, hashCode, and equals methods: These
names are inherited from java.lang.Object.

methods not starting with a verb as judged by
OpenNLP: We extract rules from methods where there
is no uncertainly as to whether the word in question is
used as a verb. OpenNLP† is a natural language pro-
cessing tool. We use WordNet†† as the library. We
have considered six words to, new, init, calc,
cleanup, and setup as verbs, because these words are
often used as words similar to verbs in Java programs.

methods not starting with an uncapitalized word: Gen-
erally, method names should start with an uncapitalized
verb, so we exclude methods like OpenInputfile.

Second, our approach generates a set of transactions T
from M, by translating each method m ∈ M into a trans-
action t(m) that is a set of elements, which are pairs of an
identifier and its category. Each element is represented as
“category:name,” where category denotes the category of
the identifier and name represents the text of the identifier.
For example, if m calls a method add in the definition, t(m)
contains “call:add” as an element. We extract the following
six types of elements in a method m defined in C as t(m).

method-verb: A verb used in the name of m. We do not
use stemming. We analyze similar verbs including syn-
onyms individually.

return-type: Return type of m.
argument-type: Type of an argument of m.
argument-name: Name of an argument of m.
field-name: Name of a field that is defined in class C and

accessed in method m. We ignore fields defined in
other classes including the parent class.

†http://opennlp.sourceforge.net/
††http://wordnet.princeton.edu/

630
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.3 MARCH 2015

call: Name of a method directly called by m.

We regard several reserved words used for types like
boolean and void as identifiers. We ignore the names
and the types of local variables because they tend to rep-
resent data manipulated in a method rather than actions in
the method. Further, we ignore method signatures for a
method called by m. For example, both ArrayList.add
and LinkedList.add are regarded as the same element
“call:add.”

Figure 2 shows how a source file is translated into
transactions. The source file in Fig. 2 (a) includes two meth-
ods: findName and addName. Figures 2 (b) and (c) repre-
sent t(findName) and t(addName), respectively.

Finally, our approach applies association rule mining
to the transaction set T . We have established two conditions
for extraction of naming association rules. The first and the
second conditions ensure that a rule recommends a verb.

1) The antecedent of a rule contains no method-verbs.
2) The consequent of a rule contains only one method-verb.

Hence, a naming association rule can be denoted as
(X, v, c, s), where v denotes the consequent {method-verb:v}.
For example, out of 100 methods whose verb is add, if 80
of them have an addAllmethod in their method definitions,
a naming association rule ({call:addAll}, add, 0.8, 80) is ex-
tracted.

Furthermore, we use the following two conditions for
further filtering.

3) The number of items in antecedent |X| ≤ 4.
4) Support s ≥ 100.

The third condition extracts simpler rules to reduce the ef-
fort of the manual analysis of extracted rules. The fourth

Fig. 2 An example of a translation from a Java source file.

condition prevents naming association rules from overfit-
ting. Høst et al. also defined the heuristic threshold which
methods must cover in at least 100 methods for rule detec-
tion [3].

3.2 Applying Rules to Recommend Verbs

In this step, we use a set of naming association rules R to
recommend verbs for a given method m. We extract a trans-
action t(m) from the method and select the applicable rules
Applicable(m) as follows.

Applicable(m) = {(X, v, c, s) ∈ R : X ⊆ t(m)}
We regard the consequent v of a rule in Applicable(m) as a
recommendation from the rule. If more than one rule rec-
ommends the same verb, we use the rule with the highest
confidence c. A list of verbs sorted by descending order of
their confidence values is recommended to developers.

4. Evaluation

We have evaluated the accuracy of our approach from two
points of view, each of which contains two research ques-
tions:

1) Rule extraction

RQ1 How many existing verbs are covered?
RQ2 What kinds of rules are used for recommendation?

2) Verb recommendation

RQ3 How many verbs can be recommended correctly?
RQ4 How many correct verbs can be recommended at a

higher rank than those used before the change?

For evaluation, we extracted naming association rules
from a training data set: 445 open source projects
which are written in Java and which are obtained from
sourceforge.net†, apache.org††, and eclipse.org†††. The
number of the extracted naming association rules is 82,102.

We applied the extracted rules to the training data set
itself and four open source projects: ArgoUML, Berkeley,
Castor, and Order Portal. We applied the extracted
rules to renamed methods extracted from six repositories
of open source projects: eclipse.pde.ui, org.eclipse.efc,
org.eclipse.mwe, cassandra, jmeter, and axis1-java. The
training data set does not include those ten projects.

Tables 1 and 2 present an overview of the training data
set and the target projects with the results, respectively. Do-
main represents the type of the domain of a project. We
referred to [27] with regard to classification. #LOC de-
notes the number of lines in the source files. #File indicates
the number of files in the project, and #Target represents
the number of considered methods as described in Sect. 3.1.
#Recomm denotes the number of methods whose existing

†http://sourceforge.net/
††http://www.apache.org/
†††http://www.eclipse.org/

KASHIWABARA et al.: METHOD VERB RECOMMENDATION USING ASSOCIATION RULE MINING IN A SET OF EXISTING PROJECTS
631

Table 1 Overview of training data set and target projects.

Target Project Domain #LOC #File #Target #Recomm Top10 #Verb

Training data set (many) 34,326,308 196,947 361,093 305,068(84.5%) 192,857(63.2%) 230/2464(0.1%)

ArgoUML 0.28.1† GUIs 367,052 1,994 3,712 3,072(82.6%) 1,629(53.0%) 138/252(54.8%)
Berkeley DB Java Edition 4.0.92†† Databases 181,198 1,198 3,238 2,633(81.3%) 1,324(50.3%) 136/270(50.4%)
Castor 1.3††† XML 306,376 1,735 2,422 2,146(88.6%) 1,477(68.8%) 115/201(57.2%)
Order Portal 1.2.4†††† Web Applications 473,826 709 2,505 2,231(89.1%) 821(36.7%) 95/160(59.4%)
Sum for four projects (four domains) 1,328,452 5,636 11,877 10,082(84.9%) 5,251(52.1%) 192/505(38.0%)

Table 2 Overview of target projects.

Target Project Period #Rename #Recomm Top10

org.eclipse.mwe††††† 09/20/2007
–11/25/2008

7 5 3

org.eclipse.ecf†††††† 12/03/2004
–02/21/2014

15 11 3

eclipse.pde.ui∗ 05/24/2001
–02/18/2014

7 5 2

Cassandra∗∗ 03/02/2009
–09/13/2013

35 20 8

axis1-java∗∗∗ 09/03/1998
–11/01/2011

20 20 6

jmeter∗∗∗∗ 01/19/2001
–12/10/2012

13 10 2

sum (NONE) 97 71(73.2%) 24

verbs are recommended in each list (and the percentage of
methods to target methods). Top10 indicates the number
of methods recommended in the top 10 of each list (and
the percentage). #Verb represents the number of different
kinds of verbs recommended by extracted rules against(/)
the number of all kinds of verbs in the project (and the per-
centage). Period denotes the development period of the each
project. #Rename represents the number of renamed meth-
ods extracted automatically from the six projects and vali-
dated manually by the first author.

4.1 How Many Existing Verbs are Covered?

To answer this research question, we have evaluated whether
existing verbs used in a program can be recommended by
the extracted rules. We applied our approach to methods
in the training data set and in four projects from different
domains. We have computed the rank of the existing verb in
the recommendation list for each method.

Table 1 represents the result of recommendation for the
training data set and other four projects. For the training
data set, the existing verbs are recommended for 84.5% of

†http://argouml.tigris.org/
††http://www.oracle.com/technetwork/database/

database-technologies/berkeleydb/overview/index.html
†††http://castor.codehaus.org/index.html
††††http://www.randrinc.com/2d randr/orderportal/home
†††††http://git.eclipse.org/gitroot/emf/org.eclipse.mwe.git
††††††http://git.eclipse.org/gitroot/ecf/org.eclipse.ecf.git

∗http://git.eclipse.org/gitroot/pde/eclipse.pde.ui.git
∗∗git://git.apache.org/cassandra.git
∗∗∗git://git.apache.org/axis1-java.git
∗∗∗∗git://git.apache.org/jmeter.git

Fig. 3 Rank of correct verbs for methods in four projects.

methods. It implies that the naming rules are extracted from
84.5% methods in the training data set. Our approach rec-
ommended the existing verb in the top 10 of a ranking for
63.2% methods covered by extracted rules.

Figure 3 shows a plot of the results of recommendation
for four projects. The vertical axis represents the percent-
age of the number of methods recommended for the existing
verb. The horizontal axis represents the rank of verbs. From
Fig. 3, if we check the top ten of the recommended list of
ArgoUML, we can find existing verbs for 44.9% of target
methods.

For other projects, the existing verbs are recommended
for 84.9% of the methods, on average. We have found that
our approach can recommend verbs to as many methods ex-
ist in the training data set, regardless of the domain. With re-
gards to methods recommended in top 10, the existing verbs
are recommended for 52.1% of the methods covered by our
approach on average; 68.8% of Castor is higher and 36.7%
of Order Portal is lower than the average of the four projects.
We consider that the percentage of methods for which exist-
ing verbs are recommended has little variation within each
domain; however, the percentage of methods for which ex-
isting verbs are recommended in the top 10 does signifi-
cantly vary in each domain. These results show that the
naming association rules extracted from a set of software
are effective for projects in different domains; however, the
ranking strategy should be changed to suit the relevant do-
main.

The extracted rules can recommend 230 verbs and cov-
ered 192 verbs in four projects. This number is consider-
ably larger than the 64 verbs covered by [3]. This number
is also practically as large as the 237 verbs covered by [14].

632
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.3 MARCH 2015

We manually identified two groups of methods for which
the correct verbs were not recommended. First, most of
such methods use rare verbs utilized by a smaller number
of methods than our support threshold of 100. Some verbs
may be recommended when we lower the threshold for rule
extraction. For example, there are 85 methods using the verb
warning in the training set. Second, in some methods, the
name can not be split by camelCase or an under score, such
as addto. If we use a novel identifier splitter like [28], we
can identify such verbs as addto as those containing the
verb add.

4.2 What Kinds of Rules are Used for Recommendation?

To understand why the approach recommends certain verbs,
we have manually analyzed what type of naming associa-
tion rules recommended the existing verbs of methods in
ArgoUML. We analyzed 347 rules used to recommend ex-
isting verbs for more than two methods in the ArgoUML
project.

As a result, we have found three meaningful groups.
Table 3 shows examples of the classified rules. The columns
Rule and Group indicate identifiers for rules and identified
groups. The columns Antecedent, Consequent, Conf,
and Sup indicate the antecedent, the consequent method-
verb, the confidence, and the support of a rule, respectively.

The first meaningful group of rules recommends the
same verb as methods called within the method. In this
group, R1 recommends remove for a method that calls
remove. Similarly, R2 recommends generate for a method
that calls generate. This group is consistent with a heuris-
tic used by Sridhara et al. [29].

The second group recommends verbs that are concep-
tually related with a certain word in the method. In this
group, R3 recommends a verb init to methods that call
setText and setEditable methods. This rule implies
that, in some cases, methods whose verb is set set some
properties to initialize some objects. Methods whose verb
is init may call many set methods. R4 recommends
parse for methods that call a nextToken method, and R5
recommends parse for methods that call nextToken and
hasMoreTokensmethods. We suggest that the rules recom-
mended parse for methods related to token because there
are more than two rules whose antecedents have an identi-
fier including the word token. Some rules such as R4 and

Table 3 Examples of rules used for methods in ArgoUML.

Rule Group Antecedent(X) Consequent(v) Conf(c) Sup(s)

R1 Meaningful 1 call:remove, argument-type:Object remove 0.491018 328
R2 Meaningful 1 call:generate generate 0.581818 128
R3 Meaningful 2 call:setText, call:setEditable, return:void init 0.488281 125
R4 Meaningful 2 call:indexOf, call:length, call:nextToken, argument-type:String parse 0.559140 104
R5 Meaningful 2 argument-type:String, call:hasMoreTokens, call:equals, call:nextToken parse 0.431877 168
R6 Meaningful 3 call:booleanValue, return:boolean is 0.848871 1,466
R7 Meaningful 3 call:startsWith, return:boolean is 0.395299 370
R8 less meaningful return:void end 0.011185 2,297
R9 less meaningful argument-type:File, return:boolean accept 0.201811 156

R5 might represent relationships between the verb and the
direct object as proposed by Shepherd et al. [30].

The third group recommends verbs based on Java pro-
gramming idioms. In this group, both R6 and R7 recom-
mend is for methods returning the boolean value. These
rules represent a naming convention implemented in IntelliJ.

Although the three groups of rules captured meaning-
ful rules, the verbs of several methods are presented by
less meaningful rules. For example, R8 represents that end
methods return the void: there are no common identifiers
among them except for void. R9 represents that accept
methods return the boolean and use a File object, whereas
various methods use files and boolean flags. The verbs are
hard to predict from the antecedent of the rules. Conse-
quently, finding the appropriate threshold remains a target
for future work.

4.3 How Many Verbs Can Be Recommended Correctly?

We investigated whether our approach can correctly recom-
mend verbs for actual methods renamed by developers. We
assume that developers should have renamed methods ap-
propriately

We extracted renamed methods from repositories of
target projects using a technique proposed by Hata et
al. [31]. A renamed method is a method whose name is
different between the two adjacent revisions. The method in
the previous revision is called the original version of the re-
named method. The method in the newer revision is called
the changed version of the renamed method. We call the
verbs used in each version of a renamed method the origi-
nal verb and correct verb, respectively.

We made following four conditions for extraction of
renamed methods. We set up the condition 1), in order to
be able to compare the rank between a correct verb and an
original verb. We set up the conditions 2), 3), and 4), in
order to be able to validate the methods manually.

1) an original verb and a correct verb are different, respec-
tively.

2) an original version and a changed version of a renamed
method have more than five lines of code.

3) a renamed method is defined in the same directory and
class in each revision.

4) the similarity between the original version and the

KASHIWABARA et al.: METHOD VERB RECOMMENDATION USING ASSOCIATION RULE MINING IN A SET OF EXISTING PROJECTS
633

changed version of a renamed method, which is com-
puted by Git, is more than 50%.

We extracted renamed methods from six projects, and val-
idated them manually. If a verb in a method name is re-
named more than once, we remove the old versions of the
method and select only the newest two versions as a tar-
get renamed method. We removed a renamed method if the
renamed method extracted automatically has no correspon-
dence between the two version. Then, we extracted 97 re-
named methods in total.

We have applied our approach to renamed methods
and computed the rank of the correct verb in the list for
each renamed method. Applying our approach to a renamed
method means that we apply our approach to the changed
version of the renamed method and get recommendation list
for the changed version.

Table 2 represents the result. As a result, 73.2% of
renamed methods are recommended the correct verb. The
proposed approach recommended the correct verb in the top
10 of a ranking for 33.8% of renamed methods covered by
our approach. We found that our approach recommended
correct verbs to as many renamed methods as exist in the
training data set. We believe that naming association rules
extracted from the training data set can recommend correct
verbs sufficiently. In the rules used for the recommendation,
there are some that can be classified as meaningful rules ex-
plained in Sect. 4.2, which recommend the same verb for
methods called in the method. For example, one rule rec-
ommended remove to methods that call remove methods,
as shown in Fig. 4.

4.4 How Many Correct Verbs can Be recommended at a
Higher Rank than the Original Verbs?

We investigated whether there is the potential for develop-
ers to use our approach effectively. We compared the rank
between a correct verb and an original verb in each list for
a renamed method. Our approach is effective in renaming
actual methods if the rank of a correct verb is higher than an
original verb.

Table 4 represents the results using a pivot table. We
categorized the rank of verbs into three categories: 1) in top
10, 2) out of top 10, and 3) out of ranking. From Table 4,
there are nine method pairs where the original verb is rec-
ommended out of the top 10 and the correct verb is recom-

Table 4 The rank of correct verbs for methods renamed by developers.

mended in the top 10. We found that there are 50 renamed
methods whose correct verbs are recommended at a higher
rank than the original verbs (orange cells). On the other
hand, 34 renamed methods are otherwise (blue cells). We
found that there are more renamed methods whose correct
verbs are recommended at a higher rank than the original
verbs.

Moreover, we have manually analyzed what kinds of
renaming occurred in each renamed method, comparing two
Java files in which a renamed method is defined. There is no
renamed method where the correct verb is not clearly more
appropriate verb than the original verb.

Figure 4 represents one of the examples whose cor-
rect verb is recommended at a higher rank than the origi-
nal verb. The method’s verb of the method is renamed from
get to remove. Although get is not recommended in the
list, remove is recommended at the top of the list. It is
thought that get is not suitable to the method because the
verb get is used to represent an accessor. We consider it in-
consequential that our approach cannot recommend get to
any method because get is removed from rule extraction in
advance. We consider that it to be a good recommendation
from identifiers in the method definition using our approach.

Figure 5 represents another example where the correct
verb is not recommended at a higher rank than the original
verb. A verb of the method is renamed from close to stop.
close is recommended at the top of the list, but stop is
recommended out of the top 10 (top 23) in the list. This
target method is a private method called by a stop method,
which is defined in BundleActivator interface. This stop

Fig. 4 A method defined in DiscoveredEndpointDescriptionFactory
class in org.eclipse.ecf.

Fig. 5 A method defined in Activator class in org.eclipse.ecf.

634
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.3 MARCH 2015

Fig. 6 A method defined in CallbackReceiver class in axis1-java.

method calls eight private methods whose names start with
close, which are renamed from close to stop, as in this
example. In analyzed renamed methods, six renamed meth-
ods including this example are related to this change. We
consider that developers renamed the methods according to
the caller’s name rather than their code. Our approach could
not work effectively because such a cause of renaming is not
taken into account.

Figure 6 represents an example whose correct verb is
recommended at a higher rank than the original verb, but
our approach still did not work effectively. The method is
replaced the misspelled word recieve with receive. Al-
though recieve is not recommended in the list, receive
is recommended out of the top 10 (top 133) in the list. This
method is defined in the parent class as an abstract method.
Our method renaming was affected by the renaming in the
parent class. In analyzed renamed methods, four renamed
methods including this example are related to this change.
So, even if we recommend verb candidates to the method
from the body, the name may not be legitimately changed.
Clearly, our approach does still have considerable potential
for improvement.

As a whole, the number of renamed methods whose
correct verbs are recommended at a higher rank than the
original verbs is almost the same as the number of renamed
methods which are not so. We consider that our approach
has potential for improvement if using additional informa-
tion is utilized.

5. Threats to Validity

We extracted naming association rules from open source
projects. Although we collected them almost systematically,
the result is dependent on the projects selected for the train-
ing data set.

Methods in the training data set may include naming
bugs. Because Høst et al. reported that naming bugs are
found in at most 5% of the methods in a project, we believe
that association rule mining does not extract many rules rec-
ommending an inappropriate verb.

We have limited the number of elements in an an-

tecedent in order to reduce the effort required for a manual
analysis of the rules. More complex but useful rules might
be missing in our analysis because of the filtering condi-
tions.

We used OpenNLP and WordNet to check whether the
words are verbs or not. Because a programming language is
not a natural language, methods may use different lexicons
for verbs. Arnaoudova et al. also used WordNet, and said
that WordNet is not optimal for programming lexicons, but
it can be replaced easily [25].

In the experiment, we assume that existing verbs are
appropriate for each method. Although this assumption has
no solid evidence, a previous work Shusi et al. [14] also used
the same assumption.

We did not evaluate the precision and the recall, be-
cause we regarded the existing verb in a method as only one
basis of the evaluation. Shusi et al. indicated only the ac-
curacy of their approach [14]. We believe that our approach
was evaluated sufficiently in regards only to the accuracy.

We have manually identified three groups of rules. The
classification depends on the first author’s experience. If
other experts classified them, the results may be different.

We have manually analyzed renamed methods. The
judgment of why certain methods are renamed depends on
the first author’s opinion. If experts of each open source
project were to carry out the some judgment, the results may
be different.

We considered only methods whose names start with a
verb. A guideline suggests that a verb should be used for
methods writing some attributes and that a verb should not
be used for methods only reading some attributes [10]. In
this paper, our target is verb recommendation for methods
whose names start with a verb. We believe that this has little
impact because we remove methods whose names do not
start with verbs for rule extraction and for evaluation.

6. Conclusion

In this paper, we proposed a technique to recommend can-
didates of appropriate method verbs to developers, using
naming association rules. The extracted rules covered 230
verbs and recommended verbs for 84.9% of methods in four
projects not included in the target projects. Our approach
recommended better verbs for 73.2% of the renamed meth-
ods extracted from six projects. Furthermore, we identified
three meaningful groups of rules used for recommendation.

In future work, we would like to reconsider thresholds
for association rule mining and improve a ranking strategy
to provide a better list of candidates to developers. We are
also interested in additional information to characterize the
usage of verbs for rule mining, e.g., nano-patterns [32], call-
ing context of methods as discussed in Sect. 4.4, and domain
information of analyzed software. To achieve full support
for rename refactoring, we may recommend whole method
names in combination with [26]. Finally, we would like
to evaluate the effectiveness of our approach for software
maintenance with human subjects.

KASHIWABARA et al.: METHOD VERB RECOMMENDATION USING ASSOCIATION RULE MINING IN A SET OF EXISTING PROJECTS
635

Acknowledgments

This work was supported by JSPS KAKENHI Grant Num-
bers 25220003, 26280021, and 26540029.

References

[1] E. Collar and R. Valerdi, “Role of software readability on software
development cost,” Proc. COCOMO/SCM, 2006.

[2] F. Corbo, C. Del Grosso, and M. Di Penta, “Smart formatter: Learn-
ing coding style from existing source code,” Proc. ICSM, pp.525–
526, 2007.

[3] E.W. Høst and B.M. Østvold, “Debugging method names,” Proc.
ECOOP, pp.294–317, 2009.

[4] G.C. Murphy, M. Kersten, and M.P. Robillard, “The emergent struc-
ture of development tasks,” Proc. ECOOP, pp.33–48, 2005.

[5] F. Deissenboeck and M. Pizka, “Concise and consistent naming,”
Software Quality Control, vol.14, no.3, pp.261–282, 2006.

[6] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “What’s in a name?
A study of identifiers,” Proc. ICPC, pp.3–12, 2006.

[7] A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and S.
Panichella, “Using IR methods for labeling source code artifacts:
Is it worthwhile?,” Proc. ICPC, pp.193–202, 2012.

[8] S. McConnell, Code Complete, Second Edition, Microsoft Press,
2004.

[9] “Java Code Conventions,” 1997.
[10] R. Green and H. Ledgard, “Coding guidelines: Finding the art in the

science,” Commun. ACM, vol.54, no.12, pp.57–63, 2011.
[11] A. Thies and C. Roth, “Recommending rename refactorings,” Proc.

RSSE, pp.1–5, 2010.
[12] E.K. Karlsen, E.W. Høst, and B.M. Østvold, “Finding and fixing

Java naming bugs with the Lancelot Eclipse plugin,” Proc. PEPM,
pp.35–38, 2012.

[13] E.W. Høst and B.M. Østvold, “The Programmer’s lexicon, Volume
I: The verbs,” Proc. SCAM, pp.193–202, 2007.

[14] S. Yu, R. Zhang, and J. Guan, Properly and Automatically Naming
Java Methods: A Machine Learning Based Approach, pp.235–246,
Springer Berlin Heidelberg, 2012.

[15] R. Agrawal, T. Imielinski, and A. Swami, “Mining association rules
between sets of items in large databases,” Proc. SIGMOD, pp.207–
216, 1993.

[16] Y. Kashiwabara, Y. Onizuka, T. Ishio, Y. Hayase, T. Yamamoto, and
K. Inoue, “Recommending verbs for rename method using associa-
tion rule mining,” Proc. CSMR-WCRE, pp.323–327, 2014.

[17] T. Mens and T. Tourwe, “A survey of software refactoring,” TSE,
vol.30, no.2, pp.126–139, 2004.

[18] W.F. Opdyke, Refactoring Object-oriented Frameworks, Ph.D. the-
sis, 1992.

[19] K. Stroggylos and D. Spinellis, “Refactoring–Does it improve soft-
ware quality?,” Proc. WoSQ, pp.10–15, 2007.

[20] E. Murphy-Hill, C. Parnin, and A.P. Black, “How we refactor, and
how we know it,” TSE, vol.38, no.1, pp.5–18, 2012.

[21] G. Bavota, B. De Carluccio, A. De Lucia, M. Di Penta, R. Oliveto,
and O. Strollo, “When does a refactoring induce bugs? An empirical
study,” Proc. SCAM, pp.104–113, 2012.

[22] W.F. Opdyke and R.E. Johnson, “Refactoring: An aid in design-
ing application frameworks and evolving object-oriented systems,”
SOOPPA, pp.145–161, 1990.

[23] V. Arnaoudova, L. Eshkevari, M. Di Penta, R. Oliveto, G. Antoniol,
and Y.G. Gueheneuc, “REPENT: Analyzing the nature of identifier
renamings,” TSE, vol.40, no.5, pp.502–532, 2014.

[24] S.L. Abebe, S. Haiduc, P. Tonella, and A. Marcus, “Lexicon bad
smells in software,” Proc. WCRE, pp.95–99, 2009.

[25] V. Arnaoudova, M. Di Penta, G. Antoniol, and Y.G. Gueheneuc, “A
new family of software anti-patterns: Linguistic anti-patterns,” Proc.

CSMR, pp.187–196, 2013.
[26] T. Suzuki, K. Sakamoto, F. Ishikawa, and S. Honiden, “An approach

for evaluating and suggesting method names using N-gram models,”
Proc. ICPC, pp.271–274, 2014.

[27] Y. Hayase, Y. Kashima, Y. Manabe, and K. Inoue, “Building domain
specific dictionaries of verb-object relation from source code,” Proc.
CSMR, pp.93–100, 2011.

[28] A. Corazza, S.D. Martino, and V. Maggio, “LINSEN: An efficient
approach to split identifiers and expand abbreviations,” Proc. ICSM,
pp.233–242, 2012.

[29] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K.
Vijay-Shanker, “Towards automatically generating summary com-
ments for Java methods,” Proc. ASE, pp.43–52, 2010.

[30] D. Shepherd, L. Pollock, and K. Vijay-Shanker, “Towards sup-
porting on-demand virtual remodularization using program graphs,”
Proc. AOSD, pp.3–14, 2006.

[31] H. Hata, O. Mizuno, and T. Kikuno, “Historage: Fine-grained ver-
sion control system for Java,” Proc. IWPSE-EVOL, pp.96–100,
2011.

[32] J. Singer, G. Brown, M. Luján, A. Pocock, and P. Yiapanis, “Fun-
damental nano-patterns to characterize and classify Java methods,”
ENTCS, vol.253, no.7, pp.191–204, 2010.

Yuki Kashiwabara received her B.E. from
Osaka University in 2012. She is a Master can-
didate at Osaka University since 2013. Her re-
search interests include software readability, and
rename refactoring. She is a member of the
IEEE and the IEEE Computer Society.

Takashi Ishio received the Ph.D. degree in
information science and technology from Osaka
University in 2006. He was a JSPS Research
Fellow from 2006–2007. He is now an assistant
professor of computer science at Osaka Uni-
versity. His research interests include program
analysis and program comprehension. He is a
member of the IEICE, IPSJ, JSSST, IEEE, and
ACM.

Hideaki Hata received the Ph.D. degree in
information science and technology from Osaka
University in 2012. He was a JSPS Research
Fellow from 2011–2013. He is now an assistant
professor at Nara Institute of Science and Tech-
nology. His research interests includes soft-
ware analytics, software economics, and human
software interaction. He is a member of the
IPSJ, JSSST, IEEE, IEEE Computer Society,
and ACM.

636
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.3 MARCH 2015

Katsuro Inoue received the B.E., M.E., and
D.E. degrees in information and computer sci-
ences from Osaka University, Japan, in 1979,
1981, and 1984, respectively. He was an as-
sistant professor at the University of Hawaii at
Manoa from 1984–1986. He was a research as-
sociate at Osaka University from 1984–1989, an
assistant professor from 1989–1995, and a pro-
fessor beginning in 1995. His interests are in
various topics of software engineering such as
software process modeling, program analysis,

and software development environment. He is a member of the IEEE, the
IEEE Computer Society, and the ACM.

