
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x
1

PAPER
Variable Data-Flow Graph for Lightweight Program Slicing and
Visualization

Yu KASHIMA†a), Nonmember, Takashi ISHIO†b), Member, Shogo ETSUDA†, Nonmember,
and Katsuro INOUE†c), Fellow

SUMMARY To understand the behavior of a program, developers of-
ten need to read source code fragments in various modules. System-
dependence-graph-based (SDG) program slicing is a good candidate for
supporting the investigation of data-flow paths among modules, as SDG
is capable of showing the data-dependence of focused program elements.
However, this technique has two problems. First, constructing SDG re-
quires heavyweight analysis, so SDG is not suitable for daily uses. Sec-
ond, the results of SDG-based program slicing are difficult to visualize, as
they contain many vertices. In this research, we proposed variable data-
flow graphs (VDFG) for use in program slicing techniques. In contrast to
SDG, VDFG is created by lightweight analysis because several approxima-
tions are used. Furthermore, we propose using the fractal value to visualize
VDFG-based program slice in order to reduce the graph complexity for vi-
sualization purposes. We performed three experiments that demonstrate the
accuracy of VDFG program slicing with fractal value, the size of a visual-
ized program slice, and effectiveness of our tool for source code reading.
key words: Static Analysis, Program Slicing, Variable Data-Flow Graph,
Visualization

1. Introduction

Many software developers spend much of their time investi-
gating source code [1]. Program understanding can be diffi-
cult in part because a single functionality is typically imple-
mented by a complex interaction of modules, e.g. methods
and classes in Java. To investigate an interaction of mod-
ules, developers often search code fragments related to their
current task, using explicit dependencies including control-
flow and data-flow among modules [2].

System-dependence-graph (SDG)-based program slic-
ing technique [3] helps developers investigate data-flow
paths. Program slicing on SDG extracts data and control-
dependences related to a particular program point. This is
typically sufficient information for developers to understand
the program. However, there are two problems with us-
ing SDG-based program slicing on a regular basis. First,
making SDGs requires heavyweight analyses, e.g. points-
to analysis and side effect analysis. Although a developer’s
typical working session time is between 30 minutes and two
hours, making SDGs often consumes more than single ses-
sion[4]. Second, existing research [5] shows that a straight

Manuscript received January 1, 2011.
Manuscript revised January 1, 2011.
†Graduate School of Information Science and Technology, Os-

aka University, Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
a) E-mail: y-kasima@ist.osaka-u.ac.jp
b) E-mail: ishio@ist.osaka-u.ac.jp
c) E-mail: inoue@ist.osaka-u.ac.jp

DOI: 10.1587/transinf.E0.D.1

graph visualization of program slices on an SDG for a typi-
cal program is too large and too complicated for a human to
understand. Therefore, the authors in [5] proposed a visual-
ization method based on text highlighting in a source code
editor. However, this visualization lost the direction, or edge
information, of the control and data dependencies.

In this paper, we propose variable data-flow graph
(VDFG)-based program slicing technique as well as robust
methods for its visualization. VDFG represents approxi-
mated control and data-dependencies among formal param-
eters, actual arguments of method invocation, local vari-
ables, predicate and field accesses.

In order to create VDFGs using lightweight analysis,
VDFG is designed to flow-, object-, and context-insensitive.
Flow-insensitivity is caused by the fact that VDFG simply
connects data-dependence edges from all assignment state-
ments of a variable to all reference statements of the same
variable. Object-insensitivity is caused by the fact that a
field is represented by a vertex that is distinguished by the
field’s fully qualified name, but is not distinguished by a
receiver object. Finally, context-insensitivity arises due to
the backward/forward traversal method of program slicing.
Owing to these insensitivities, constructing VDFG requires
abstract syntax trees or byte code, and class hierarchy in-
formation at minimum, but not intensive analyses such as
points-to analysis and side effect analysis.

We visualize a program slice on a VDFG in the form
of graph. In order to reduce the complexity of the visualized
slice, we used the fractal value [6]. Fractal value, which cor-
responds to the weight of a vertex, is reduced in accordance
with the number of the siblings of the vertex. By filtering
vertices using fractal value, we can automatically prevent
visualization at vertices that have a large number of edges.
As a result, a human operator will be capable of reading
and comprehending the visualized graph. Naturally, edges
excluded from visualization may include important one for
program comprehension. However, in our experience, those
edges often include many infeasible paths because of insen-
sitivities employed by VDFG. We designed that the edges
are visualized only when a human operator wants to investi-
gate them.

The implementation of our visualizer for VDFG is an
interactive graph viewer integrated into Eclipse. When a
mouse button is clicked on a method name or a field name
in a text editor, a program slice of the selected entity are
visualized in the graph viewer.

Copyright c© 200x The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

We performed three experiments to evaluate our pro-
posed program slicing and graph-viewing techniques. The
first experiment compared our technique to Improved slicer
[7], which is the state-of-the-art program slicing technique.
Although program slices from VDFGs without fractal val-
ues will include many imprecise results, many of the pro-
gram slices with fractal value are precise. These results indi-
cate that our lightweight technique is sufficiently precise for
visualization. The second experiment measured the size of a
slice with fractal value. The results show that dozens of ver-
tices are included in a slice from any applications, and that
a slice includes the dependencies spanning several methods,
on average. The third experiment evaluated the effectiveness
of our visualization tool for program understanding as well
as the performance of the tool. In this experiment, we as-
signed two program understanding tasks to 16 participants
using JEdit, a Java text editor. The results demonstrate that
participants using Eclipse enhanced with our visualization
tool were able to better investigate data-flow paths than the
participants using Eclipse without our visualization tool.

This paper is an extended version of [8], and has been
combined two additional contributions:

• Compare the precision of our proposed technique and
state of the art program slicing technique. The preci-
sion of the program slice using with VDFG and fractal
value was surplysingly high.

• Measure the size of the visualized program slice using
with VDFG and filtering by fractal values. The number
of vertices in a slice is surpressed to dozens, besides
a slice may include a distant vertex from criterion of
program slice.

These contributions correspond to the first and the second
experiments, respectively.

The remainder of the paper is structured as follows. In
Section 2, we present related work. In Section 3, we de-
scribe the concept of VDFG, the VDFG-based program slic-
ing techniques, and its visualization. The results of the three
experiments are shown in Section 4, and we present conclu-
sions and future research in Section 5.

2. Related Work

2.1 Program Slicing

Program slicing [9] is a well-known technique used to ex-
tract program slices, or a set of program statements related
to slicing criteria selected by a developer. A program slice
is computed by backward traversal of an SDG, based on a
particular set of slicing criteria [3].

SDGs are directed graphs whose vertices represent the
statements of a program. Its directed edges represent data
and control dependencies. A data dependency is a relation
between an assignment and a reference of a variable. A data
dependency from statement s1 to statement s2 exists if all
of the following conditions are satisfied:

1. s1 assigns a value to v

2. s2 refers to v
3. At least one execution path from s1 to s2 without re-

defining v exists.

The third condition depends on a control-flow graph of a
method containing s1 and s2.

A control dependency is a relation between a condi-
tional statement and a control statement. A control depen-
dency from statement s1 to statement s2 exists if:

1. s1 is a conditional predicate
2. s1 determines whether s2 is executed or not.

The definition of control dependency relations also depends
on a control-flow graph.

Program slicing can be effectively used to investigate
the detailed behavior of a program for debugging [10].
SDGs are also employed to support source code reading,
e.g., to locate features in source code [11] and to search sim-
ilar code fragments [12].

Although SDGs include sufficient data-flow informa-
tion for developers, there are two remaining challenges to
applying program slicing to program understanding tasks.
First, making SDGs requires several heavyweight prelim-
inary analyses such as a points-to analysis and side effect
analysis. In the present study, we use a flow, context and
object-insensitive analysis to make VDFGs that do not re-
quire heavyweight preliminary analyses.

Secondly, visualizing an SDG or a program slice for a
typical program is difficult because of the large number of
vertices [5]. In the study of [5], Krinke has used the follow-
ing two techniques:

• Visualize control/data dependences in a program slice
by text highlighting in the source code editor, without
using graph representation. This drops edge directional
information, but enable to visualize a program slice
hiding a too large SDG.

• Employ distance-limited slicing technique for visualiz-
ing locality since user probably interests near instruc-
tions from the criteria than far away instructions. The
distance of instructions from the criteria is shown by
highlighting color. However, if a vertex near crite-
rion may connects to a lot of vertices, the size of the
distance-limited slice may not be reduced significantly.

On the contrary, we have used a graph representation in or-
der to visualize the directional information of edges in an
SDG. The issue of the explosion of the number of vertices
and edges has been addressed by fractal value. Fractal value
[6] is a weight of a vertex decided as the fractal value of the
parent vertex per the number of sibling vertices. Our ap-
proach filter out vertices which fractal values are smaller
than a threshold. As a result, even if a vertex near criterion
connects to many vertices, the size of the visualized slice
will be suppressed as much as readable size.

2.2 Lightweight Analysis

Our approach is an approximation of data dependence anal-

KASHIMA et al.: VARIABLE DATA-FLOW GRAPH FOR LIGHTWEIGHT PROGRAM SLICING AND VISUALIZATION
3

ysis. Previously, Jász [13] proposed an alternative ap-
proximation — Static Execute After/Before dependencies.
That approach is a control-flow-based approximation with-
out data-flow analysis, while our approach performs approx-
imated data and control flow analysis. The weak point of
Jász’ approach is a handling loop that connects control paths
among all functions, e.g., a message loop in the GUI. Our
analysis can extract data dependencies in such applications.

Nguyen [14] has proposed a flow-insensitive data-flow
analysis for mining source code patterns. The analysis con-
structs a directed acyclic graph named groum whose nodes
represent method calls and field accesses in a Java method.
A data dependency edge between two nodes is generated if
the two nodes share at least one common variable. Note
that groum is an intra-procedural representation to extract a
coding pattern in a method. On the contrary, our approach
aims to visualize inter-procedural information, e.g. data-
dependencies among methods.

2.3 Software visualization for Program Comprehension

Our approach along with several tools is able to visualize
software for program comprehension, starting with the im-
plementation detail. The relationships among source code
fragments should be visualized so that developers can select
an appropriate source code location to investigate.

Code Bubbles [15] is a unified viewer for source code
and its related documents. The tool focuses on the user in-
terface based on the bubble metaphor. The tool displays a
number of source code fragments and their method call re-
lationships so that developers can track the progress of their
particular investigation. On the other hand, the tool does
not analyze the implementation details of each code frag-
ment. To investigate data-flow paths, developers must there-
fore open and read source code fragments. Our research
visualizes summarized dependencies in source code so that
developers can efficiently choose source code fragments to
be investigated and ignore irrelevant source code fragments.

A visualization tool should reflect the structure of
source code fragments. DA4Java [16] shows an overview
of Java source code as a nested graph. Vertices in the graph
represent source code entities that correspond to packages,
classes, methods, and fields. Edges in the graph represent
class inheritance/subtyping, method calls and field accesses.
DA4Java represents a class as a node that contains vertices
representing methods as well as fields belonging to that
class. We make use of nested visualization as a technique
for graph visualization.

Whyline [17] is a debug support tool. This tool an-
swers developer’s questions of debugging which are “why?”
or “why not?” about program bug. For example, if a devel-
oper questions “Why this method was executed in the situ-
ations?”, Whyline displays the causality of the method in-
vocation, such as conditions, data flows, and control flows.
Whyline uses both static analysis and dynamic analysis,
while our approach uses static analysis.

3. VDFG-based Slicing Technique

3.1 VDFG

We have defined VDFG as a directed graph that represents
data dependencies and control dependencies in a Java pro-
gram. VDFG is built from either source code or Java byte
code, and includes both variables and instructions as ver-
tices. Variables are included because they are important to
investigate data-flow paths. We have defined an approxi-
mated data dependence as follows.

• If a statement s1 assigns a value to v and another state-
ment s2 refers to v, then s2 depends on s1 via v.

Compared with the definition of data dependence for pro-
gram slicing described in Section 2.1, we have removed
the third condition. Similarly, in the case of making a
VDFG from source code, control dependence is approx-
imated based on the syntax tree instead of control-flow
graphs as follows:

• A statement is controlled by its enclosing control state-
ment such as if and while.

In the case of making a VDFG from byte code, we
performed traditional control-dependence analysis because
syntax trees are lost in byte code. Although these approxi-
mations may generate infeasible dependencies, they will not
miss any traditional dependencies.

VDFG comprises three kinds of vertices and two kinds
of edges, as follows.

A variable vertex corresponds to a variable or a literal.
Variables include local variables, formal parameters, actual
arguments, instance field variables, class variables, and lit-
erals.

An operator vertex corresponds to an operator of an
expression. An operator vertex has one or more incoming
data-flow edges from vertices corresponding to operands. If
the resulting value of an operator is assigned to a variable
or used by another operator, the operator vertex has an out-
going data-flow edge. We treat method calls, field access
and array access as special operators whose operands, e.g. a
receiver object and parameters, are represented by variable
vertices.

A control vertex corresponds to a control statement
such as if and while. A control vertex has an incoming data-
flow edge representing the conditional expression and out-
going control edges to call-site vertices and operator vertices
controlled by the condition.

Data-dependence and control-dependence edges rep-
resent approximated data dependencies and control depen-
dencies, as mentioned above.

A VDFG is constructed by the following steps:

1. Create a variable vertex for each variable declaration.
2. Translate each statement into vertices and edges.

The first step processes fields, local variables, and liter-
als. All instance fields and class fields in the target program

4
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

are translated into variable vertices.
The second step is an intra-procedural process of mak-

ing vertices and edges that represent each statement. First,
statements are parsed into vertices. Expressions are parsed
into variable vertices and operator vertices. if, for, and
while statements are parsed into control vertices and ver-
tices that represent predicates. Method call statements are
parsed into variable vertices that represent actual arguments
and returned values. Field access instructions and array ac-
cess instructions are treated as method calls. Each instruc-
tion has an actual-in vertex representing the receiver object.
Moreover, a field or array write instruction has an actual-
in vertex representing the assigned value. A field or array
read instruction has an actual-out vertex representing the
read field or array element value. Each array instruction has
an additional actual-in vertex representing the index value.

After making vertices, data-dependence edges and
control-dependence edges are drawn according to the above
definitions. Additionally, a vertex of a field read/write in-
struction representing the field value is connected to the field
vertex by a data-dependence edge. A vertex representing an
array element is connected to other vertices representing ar-
ray elements that have the same declaration type.

An inter-procedural data-dependence edge is drawn
to represent a parameter data-flow related to method
calls. Actual-in vertices to formal-in vertices and formal-
out vertices to actual-out vertices are connected by data-
dependence edges according to method calls. For virtual
method call resolution, we use Class Hierarchy Analysis
(CHA) [18]. VDFG ignores unanalyzable library classes
for which source code is not available. A method call to
a library class is not connected to the called method.

Our analysis does not support several aspects of Java
language as follows:

• The statements in a catch block are simply translated
into a VDFG without a special rule. We ignored data-
flow paths for an exception object from a method call
or a throw statement to a catch block, although we
could represent such a data-flow in VDFG. Developers
who investigate exceptional control-flow can use an-
other visualization tool such as Flow View specialized
for exception handling [19].

• We did not take multi-threaded execution into account
as regular control-flow paths. VDFG includes data de-
pendencies between threads if the threads communi-
cate by variables. A synchronized block is represented
as a control vertex that takes as input an expression and
controls statements in the block.

Figure 1 shows an example of source code and its
VDFG. The code fragment in Figure 1a is a class C that has
a field f and methods max, setF, and foo. The method max
takes two parameters x and y and returns the larger of the
two. The method setF takes one parameter i and assigns i
to field f. The method foo executes setF with argument 1,
max with argument f and 5, and then returns z, which is the
value returned from a call to the max method.

1 class C {

2 int f;

3 static int max(int x, int y) {

4 int result = y;

5 if (x > y)

6 result = x;

7 return result; }

8 void setF(int i) { this.f = i; }

9 int foo() {

10 setF(1);

11 int z = max(this.f, 5);

12 return z; }

13 }

(a) Source Code Example

xmax y

if

result

$F-out

setF

i

foo

1

5

z

setF $A-in-1

$A-out

max $A-in-0 $A-in-1 this.f $obj $val

this.f $obj $val

$A-in-0

this

this

C.f

$F-out

Data-dependence Edge

Control-dependence Edge

Variable Vertex Control Vertex

Operator Vertex

result=x result=y

x > y

return result

return z

(b) Variable Data-Flow Graph

Fig. 1: Example of Source Code and Variable Data-Flow
Fraph

Figure 1b shows the VDFG for the example source
code. The area enclosed by the dashed line includes the
subgraph of the corresponding method.

In the VDFG, vertices x and y in max correspond to the
local variables “int x” and “int y”, respectively. The ver-
tex “x > y” represents a comparison operator in line 5. The
vertex takes as inputs two edges from x and y, and provides
the resultant value to the following if statement. Assignment
“result = x;” in line 6 is controlled by the enclosing if
statement. Therefore, the “if” vertex has a control edge to
operator vertex “result = x”.

The method call instruction in line 11 is translated
to four vertices whose labels are “max”, “$A-in-0”,
“$A-in-1”, and “$A-out” (the vertices are represented by a
method call including four areas). The vertex labeled max is
a pseudo-vertex representing the method call. $A-in-0 and
$A-in-1 vertices represent the actual-in vertices. $A-out
represents the actual-out vertex. The actual vertices con-
nect to their corresponding formal vertices, i.e., the vertices

KASHIMA et al.: VARIABLE DATA-FLOW GRAPH FOR LIGHTWEIGHT PROGRAM SLICING AND VISUALIZATION
5

$A-in-0, $A-in-1 and $A-out are connected to vertices
x, y, and $F-out, respectively. These are formal-in and
formal-out parameters of method max invoked by the call.

The field access instruction in line 8 is translated to
three vertices labeled “this.f”, “$obj” and “$val” in
setF. The vertex this.f is a pseudo-vertex represent-
ing the field access. The vertices $obj and $val represent
the receiver object and field value, respectively. The vertex
$obj is connected to the vertex labeled “this”, which rep-
resents the variable this. The vertex $val is connected to the
vertices labeled “i” and “C.f”. The vertex i represents the
local variable i. The vertex C.f represents the value of field
f of class C. The instruction in line 8 sets the value of f, so
that $val vertex connects to C.f. The C.f is connected to
$val in foo because the field access instruction in line 11
uses the field value f.

3.2 Program Slicing and Visualization

Program slicing using a VDFG is performed by simple
backward/forward traversal from criterion designated by the
developer. To reduce the complexity of the visualized graph
corresponding to the program slice, we use fractal values.

A fractal value w(v) is a weight for a node v. The fractal
value for the root node vroot is defined as w(vroot) = 1.0. In
our technique, vroot nodes correspond to criterion of a pro-
gram slice. The fractal values of the other nodes are de-
cided by the fractal value of a parent node and the number
of children of the parent node. A child of a vertex means
a vertex directly connected to the node by a traversal di-
rectional edge. If a vertex has multiple parent vertices, the
fractal value of the vertex is decided to the maximum value.
The concrete definition in the case of backward traversal as
follows:

w(v) = max{ f (vp) | {v→ vp}}

f (vp) =
w(vp)

|{v | v→ vp}|

In the case of forward traversal, the directions of the arrows
are reversed.

Figure 2 shows the example of fractal value using with
the VDFG shown in Figure 1b. This figure shows the VDFG
of method max. The vroot is $F-out. The direction of a pro-
gram slicing is backward. The fractal value of each vertex
is shown as digit in parentheses. The fractal values of the
vertices of return result and result are 1.0, because
the path from vroot has no branch. In contrast, the values of
result=x and result=y is 0.5, because both are children
of result. Similarly, values of x and if are 0.25 since
these are children of result=x. Note that fractal values of
x and y are 0.25 and 0.5 respectively, despite these vertices
are children of x > y. The reason why is that our fractal
value applies the maximum value if a vertex has multiple
parents.

For the purposes of program slicing, the fractal value
is used as a threshold, i.e., traversal in program slicing con-
tinues until visiting a vertex whose fractal value is less than

max x
(0.25)

y
(0.5)

if
(0.25)

result
(1.0)

vroot $F-out
(1.0)

return result
(1.0)

result=x
(0.5)

result=y
(0.5)

x > y
(0.25)

Fig. 2: An example of fractal value for backward traversal
from vroot

a threshold value. As a result, the slices with fractal values
only include vertices whose fractal values are greater than
this threshold. Theoretically, if the threshold fractal value is
decreased, the size of the slices will increase.

An important feature of fractal value is that the frac-
tal value of a node is the same as its parent if there are no
sibling nodes. A graph traversal continues through a vari-
able if the value of the variable is determined by another
single variable, e.g., a parameter that is incoming from a
single caller. On the other hand, backward traversal stops
at methods called by a large number of other methods, e.g.,
setter/getter methods. Similarly, forward traversal stops at
return values and fields used by a large number of methods.
In contrast to the distance limit [5], which limits a slice size
according to the distance from the criteria, fractal value sup-
presses the complexity even if a complicated portion exists
near the criteria.

The results of program slicing are visualized on the
screen using a graph viewer. In order to focus on the inter-
procedural dependences, visualized vertices include only
those that represent method calls, parameters, fields, local
variables, and predicates. Edges are visualized if depen-
dence existed between the visualized vertices.

At points where the backward/forward traversal is
stopped because fractal value falls a certain threshold, a
pseudo-node labeled “more ...” is added to the visualized
graph, so as to indicate that the program slice has been ter-
minated at the node. Developers can start another graph
traversal from the method by selecting another method.

Our VDFG viewer is implemented as an Eclipse plug-
in. To help developers investigate source code, the VDFG
view interacts with a text editor; a mouse click on a method
name or a field name triggers program slicing according to
the following criterion:

Criterion for Method Declarations A mouse click on a

6
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

method declaration provides backward program slic-
ing criterion that include all parameters of the meth-
ods and referenced fields in the method. Moreover, the
mouse click also provides forward program slicing cri-
terion that include the return value of the method and
assigned fields in the method.

Criterion for Method Calls A mouse click on a method
call site provides forward program slicing criterion, in-
cluding the actual parameters. Moreover, the click also
provides backward slicing criteria that include the re-
turned value of the method call.

Criterion for Fields A mouse click on a field declaration
or a field reference provides forward/backward pro-
gram slicing criteria that include a corresponding field
vertex.

Our visualization approach involves a hierarchical
view, similar to DA4Java [16]. A class is represented by a
rectangle that contains its methods and fields. Each method
involved in the subgraph is also represented as a rectan-
gle including vertices representing the instructions of the
method. We have excluded the other methods and fields that
are not involved in the subgraph from the graph view be-
cause such methods and fields are irrelevant to the visualized
subgraph. We have used Graphviz [20] for graph layout.

The graph view provides hyperlinks to Java source
code so that developers can quickly confirm the implemen-
tation details of methods that have been omitted in the graph
view. Developers can move to a method declaration, a
method call site, or a field declaration in a Java editor by
selecting a vertex in the graph view.

4. Experiment

For evaluating our technique, we have defined the following
three research questions:

RQ1: How accurate is VDFG-based program slicing us-
ing fractal values as compared to state-of-the-art
program slicing? The VDFG-based program slicing
technique has several insensitivities. Therefore, for
general use, it is important to know the accuracy of the
visualized program slices that result from our methods.

RQ2: Is a slice extracted with fractal values an effective
size for supporting investigation of control and data
dependencies? A program slice should not be so small
that it cannot provide effective information to develop-
ers. Additionally, the slice should not be too large so
that it can actually provide understandable information
to developers. Furthermore, it is desirable that the slice
includes a portion that is distant from the developer’s
focused point i.e. criterion.

RQ3: Is our tool effective for development tasks? Our
proposed tool aims to support development tasks;
therefore, it is important to evaluate the effectiveness
in practical usage.

The following subsections describe the three experiments

that we designed to answer these questions.

4.1 Experiment 1: Comparison with State-of-the-Art Pro-
gram Slicing Techniques

In this experiment, we compared VDFG-based program
slicing for visualization and state-of-the-art program slic-
ing. For the target comparison, we selected the Improved
Slicer (IMP), which is a context-sensitive, flow-sensitive,
and object-sensitive SDG-based program slicing technique
[7]. Since VDFG-based program slicing uses conservative
approximations, a slice using VDFG may not be accurate
but includes any portion in a slice by IMP. Therefore, we
estimated the accuracy of vertices and edges in a slice using
a criterion c as follows:

Accuracy(c) =
|S VDFG(c) ∩ S IMP(c)|

|S VDFG(c)|

where S VDFG(c), S IMP(c) refer to slice with VDFG to c, and
a slice with IMP to c, respectively As IMP requires points-
to information, we used Spark [21] with Soot Framework
[22]. In addition, we used the byte code analysis version of
our VDFG-based slicing tool in order to be consistent with
Spark and IMP both of which use byte code analysis.

As an SDG of IMP does not have corresponding ver-
tices of a field vertex and a local variable vertex, we have
defined corresponding vertices as follows:

• A vertex representing an instruction that accesses a
field corresponds to a field vertex that represents the
same field.

• A vertex representing an instruction that accesses a lo-
cal variable corresponds to a local variable vertex that
represents the same local variable.

In addition, we defined the correctness of a vertex and edge
as follows:

• A vertex of a slice from VDFG is correct if a corre-
sponding vertex exists in a slice from IMP.

• An edge v1 → v2 of a slice from VDFG is correct if
corresponding vertices for v1 and v2 exist in a slice from
IMP, and v2 is reachable from v1 in the slice from IMP.

To evaluate the accuracy of a visualized slice, we com-
pared VDFG-based slice visualization of target vertices and
edges, as described in Section 3.2. Furthermore, to deter-
mine the accuracy of a VDFG-based program slice with
various fractal values, we tested nine configurations. Eight
of the configurations use different minimum fractal values,
ranging from 0.005 to 0.32. The ninth configuration does
not use fractal value.

The experimental target applications are taken from
Qualitas Corpus [23]. Table 1 shows the target applica-
tions and their sizes. The columns CHA and Points-to show
the number of reachable methods and instructions from a
main method by CHA and Spark’s Points-to analysis, re-
spectively. As performing program slicing requires criteria,
we used three different types of criterion, as described in

KASHIMA et al.: VARIABLE DATA-FLOW GRAPH FOR LIGHTWEIGHT PROGRAM SLICING AND VISUALIZATION
7

Table 2: Accuracy of Vertices and Edges by VDFG with Fractal Value
Accuracy (Vertices / Edges) Accuracy (Vertices / Edges)

Target 1st Qu. Median 3rd Qu. Target 1st Qu. Median 3rd Qu.
Cobertura No limit 0.819 / 0.668 0.994 / 0.902 1.000 / 1.000 Informa No limit 0.091 / 0.069 0.302 / 0.217 1.000 / 1.000
Cobertura 0.005 1.000 / 0.924 1.000 / 1.000 1.000 / 1.000 Informa 0.005 0.714 / 0.667 1.000 / 0.980 1.000 / 1.000
Cobertura 0.01 1.000 / 0.958 1.000 / 1.000 1.000 / 1.000 Informa 0.01 0.784 / 0.714 1.000 / 1.000 1.000 / 1.000
Cobertura 0.02 1.000 / 1.000 1.000 / 1.000 1.000 / 1.000 Informa 0.02 0.846 / 0.792 1.000 / 1.000 1.000 / 1.000
Cobertura 0.04 1.000 / 1.000 1.000 / 1.000 1.000 / 1.000 Informa 0.04 0.875 / 0.836 1.000 / 1.000 1.000 / 1.000
Cobertura 0.08 1.000 / 1.000 1.000 / 1.000 1.000 / 1.000 Informa 0.08 0.928 / 0.870 1.000 / 1.000 1.000 / 1.000
Cobertura 0.16 1.000 / 1.000 1.000 / 1.000 1.000 / 1.000 Informa 0.16 1.000 / 1.000 1.000 / 1.000 1.000 / 1.000
Cobertura 0.32 1.000 / 1.000 1.000 / 1.000 1.000 / 1.000 Informa 0.32 1.000 / 1.000 1.000 / 1.000 1.000 / 1.000
Emma No limit 0.154 / 0.098 0.406 / 0.311 1.000 / 1.000 Jasml No limit 0.016 / 0.013 0.790 / 0.734 1.000 / 1.000
Emma 0.005 0.686 / 0.625 1.000 / 0.933 1.000 / 1.000 Jasml 0.005 0.179 / 0.170 0.979 / 0.933 1.000 / 1.000
Emma 0.01 0.742 / 0.680 1.000 / 0.950 1.000 / 1.000 Jasml 0.01 0.265 / 0.245 1.000 / 0.949 1.000 / 1.000
Emma 0.02 0.808 / 0.741 1.000 / 1.000 1.000 / 1.000 Jasml 0.02 0.385 / 0.375 1.000 / 0.984 1.000 / 1.000
Emma 0.04 0.867 / 0.814 1.000 / 1.000 1.000 / 1.000 Jasml 0.04 0.500 / 0.452 1.000 / 1.000 1.000 / 1.000
Emma 0.08 1.000 / 0.904 1.000 / 1.000 1.000 / 1.000 Jasml 0.08 0.533 / 0.500 1.000 / 1.000 1.000 / 1.000
Emma 0.16 1.000 / 1.000 1.000 / 1.000 1.000 / 1.000 Jasml 0.16 0.667 / 0.643 1.000 / 1.000 1.000 / 1.000
Emma 0.32 1.000 / 1.000 1.000 / 1.000 1.000 / 1.000 Jasml 0.32 0.692 / 0.640 1.000 / 1.000 1.000 / 1.000
Freecs No limit 0.089 / 0.059 0.688 / 0.475 0.991 / 0.960 SableCC No limit 0.111 / 0.047 0.419 / 0.171 1.000 / 1.000
Freecs 0.005 0.450 / 0.400 0.971 / 0.936 1.000 / 1.000 SableCC 0.005 0.650 / 0.588 1.000 / 0.976 1.000 / 1.000
Freecs 0.01 0.500 / 0.451 0.980 / 0.963 1.000 / 1.000 SableCC 0.01 0.714 / 0.632 1.000 / 1.000 1.000 / 1.000
Freecs 0.02 0.529 / 0.500 1.000 / 1.000 1.000 / 1.000 SableCC 0.02 0.800 / 0.750 1.000 / 1.000 1.000 / 1.000
Freecs 0.04 0.571 / 0.532 1.000 / 1.000 1.000 / 1.000 SableCC 0.04 0.857 / 0.800 1.000 / 1.000 1.000 / 1.000
Freecs 0.08 0.611 / 0.583 1.000 / 1.000 1.000 / 1.000 SableCC 0.08 1.000 / 0.913 1.000 / 1.000 1.000 / 1.000
Freecs 0.16 0.667 / 0.667 1.000 / 1.000 1.000 / 1.000 SableCC 0.16 1.000 / 1.000 1.000 / 1.000 1.000 / 1.000
Freecs 0.32 0.750 / 0.714 1.000 / 1.000 1.000 / 1.000 SableCC 0.32 1.000 / 1.000 1.000 / 1.000 1.000 / 1.000

Table 1: The Sizes of Target Applications
CHA Points-To

#Method #Instructions #Method #Instructions
Cobertura 337 14,068 327 14,027
Emma 1,234 39,227 1,236 39,102
Freecs 1,327 57,324 1,147 51,671
Informa 485 16,368 458 15,586
Jasml 233 18,419 233 18,419
SableCC 1,949 54,373 1,898 54,143

Section 3.2. As some of the criteria for VDFG do not ex-
actly correspond to IMPfs vertices, the criterion for IMP are
defined as follows:

Criterion for Method Declaration Backward slicing cri-
terion include all parameters of the methods and field
reference instructions in the method. Forward slicing
criterion include the return value of the method and
field assignment instructions in the method.

Criterion for Method Call Same as for VDFG (see Sec-
tion 3.2).

Criterion for Field Given a field, backward/forward slic-
ing criterion include all field access instructions ac-
cessed to the field.

Table 2 shows the distributions of the accuracies ob-
tained with the various configurations. In particular, the ta-
ble shows the first, second, and third quartile values. The
target columns show the target application as well as the
configuration. Each cell contains the accuracies for vertices
and edges. Note that “No limit” in the target column corre-
sponds to the configuration that does not use fractal value.

The results show that VDFG-based program slicing

without fractal value leads to many inaccurate vertices and
edges. For example, the median of vertex accuracy rates for
“SableCC No limit” is 0.419; the median accuracy for edges
is only 0.170. With the exception of the results of Cobertura
and Jasml, the median for edge accuracy was less than 0.50.
Unfortunately, this result indicates that using VDFG pro-
gram slicing without fractal value yields highly inaccurate
results.

On the other hand, the accuracy of VDFG-based pro-
gram slicing with fractal values is surprisingly high. For ex-
ample, the median for vertex/edge accuracies of “SableCC
0.005” is 1.0, despite the fact that “SableCC Nolimit” re-
sulted in a quite low accuracy. All of the vertex/edge ac-
curacies with a minimum fractal value threshold of 0.005
were more than 0.9. The result shows two things: First, if
a vertex has many children, edges between the vertex and
the children really include infeasible paths because of in-
sensitivities. Secondly, fractal value succeeds to stop visu-
alization of imprecise vertices which are connected by such
infeasible paths.

The results shown in Table 2 also indicate that if the
minimum fractal value is configured to larger value, then
the quartiles of accuracies are also higher values. Increas-
ing the minimum fractal value means that the slice excludes
portions that are far from the criteria. Therefore, this re-
sult indicates that the portion of the program slice near the
criteria is accurate even if a graph including several known
insensitivities is used. If the minimum fractal value is 0.04
or more, all of the vertex/edge accuracy medians are 1.0.
These results show that VDFG’s program slicing with frac-
tal values is accurate and the insensitivities of VDFG are

8
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

Table 3: The Distribution of the number of Vertices and Max Distance in the Slice with Fractal Value
#Vertices / Max Distance #Vertices / Max Distance

1st Qu. Median 3rd Qu. Max 1st Qu. Median 3rd Qu. Max
Cobertura 0.005 3 / 1 11 / 6 33 / 12 417 / 36 Informa 0.005 4 / 2 24 / 9 56 / 13 644 / 40
Cobertura 0.01 3 / 1 10 / 5 26 / 11 256 / 30 Informa 0.01 4 / 2 21 / 8 42 / 12 380 / 40
Cobertura 0.02 3 / 1 9 / 5 21 / 10 203 / 29 Informa 0.02 4 / 2 17 / 7 33 / 10 216 / 33
Cobertura 0.04 3 / 1 8 / 4 17 / 8 172 / 25 Informa 0.04 4 / 2 14 / 6 24 / 9 148 / 27
Cobertura 0.08 3 / 1 7 / 4 14 / 7 122 / 22 Informa 0.08 4 / 2 10 / 5 17 / 7 90 / 26
Cobertura 0.16 3 / 1 6 / 3 10 / 6 81 / 19 Informa 0.16 4 / 1 8 / 4 12 / 6 69 / 26
Cobertura 0.32 3 / 1 5 / 3 8 / 4 50 / 19 Informa 0.32 3 / 1 6 / 3 9 / 4 56 / 23
Emma 0.005 4 / 3 22 / 10 47 / 15 809 / 36 Jasml 0.005 4 / 1 16 / 8 36 / 11 734 / 22
Emma 0.01 4 / 3 19 / 9 38 / 13 497 / 31 Jasml 0.01 4 / 1 14 / 7 25 / 10 576 / 19
Emma 0.02 4 / 2 16 / 8 30 / 11 371 / 29 Jasml 0.02 4 / 1 13 / 7 19 / 9 468 / 18
Emma 0.04 4 / 2 13 / 7 22 / 10 280 / 27 Jasml 0.04 4 / 1 11 / 6 15 / 7 329 / 18
Emma 0.08 4 / 1 11 / 6 16.25 / 8 196 / 23 Jasml 0.08 4 / 1 8 / 4 13 / 6 234 / 18
Emma 0.16 4 / 1 8 / 4 12 / 6 140 / 21 Jasml 0.16 4 / 1 6 / 3 9 / 4 135 / 15
Emma 0.32 3 / 1 6 / 3 9 / 4 76 / 21 Jasml 0.32 4 / 1 5 / 2 7 / 4 90 / 14
Freecs 0.005 4 / 1 21 / 9 40 / 12 2,130 / 38 SableCC 0.005 4 / 1 14 / 7 34 / 12 1,058 / 25
Freecs 0.01 4 / 1 18 / 8 31 / 11 1,431 / 29 SableCC 0.01 4 / 1 12 / 6 26 / 10 496 / 25
Freecs 0.02 4 / 1 15 / 7 25 / 9 950 / 29 SableCC 0.02 4 / 1 11 / 6 20 / 9 364 / 25
Freecs 0.08 4 / 1 10 / 5 14 / 7 524 / 27 SableCC 0.08 4 / 1 8 / 4 13 / 7 146 / 22
Freecs 0.16 4 / 1 8 / 4 11 / 5 424 / 27 SableCC 0.16 4 / 1 7 / 4 11 / 5 131 / 19
Freecs 0.32 4 / 1 6 / 3 8 / 4 277 / 24 SableCC 0.32 3 / 1 5 / 3 8 / 4 88 / 16

therefore tolerable.

4.2 Experiment 2: Investigation of Slice Size

Experiment 1 showed that VDFG-based program slicing
with fractal values extracts accurate slices. However, if the
slice is too small, it may not be helpful for program under-
standing because the slice will only visualize a narrow area.
To address RQ2, we measured slice size as well as whether
the distant portions are included in slices. To measure the
former, we simply counted the number of vertices in each
slice. To measure the latter, we measured the maximum dis-
tance of vertices from the criterion in a slice. The configu-
rations and targets were the same as for Experiment 1.

Table 3 shows the distribution of the number of ver-
tices as well as the max distances. Similar to Table 2, the
target column displays both the target and the fractal value
configuration.

The results shown in Table 3 demonstrate that the num-
ber of vertices may be as high as hundreds or thousands;
however, in most cases, the number is several dozen. If the
minimum fractal value is 0.005, the maximum median is
24, which corresponds to the case of Informa. The results
show that fractal value prevents an explosion in the number
of vertices and leaves a number of vertices that is human
manageable.

Regarding the distance from the criterion, the data in
Table 3 also indicate that the max distances typically range
from three to ten. If the minimum fractal value is set to
0.005, the minimum median distance is six (in the case
of Cobertura). As the slice is focused on revealing inter-
procedural dependencies, the results suggest that a slice
shows dependencies among several methods, on average.
On the other hand, a slice may include several dozens of
distant vertices in some cases, e.g., the max value is 40 in

the case of Informa 0.005. This indicates that the slice actu-
ally includes distant locations that are connected by simply
straight-dependence edges. Since these straight edges are
easy to understand for users, the slice supports the investi-
gation of long-range dependence paths.

From an alternative point of view, Table 3 shows the
stability of the slice size against the target program. If the
fractal value is the same, the medians of the results do not
vary greatly. We think that this property is suitable for vi-
sualization because a user does not confuse the variation of
the size of the visualized slices.

4.3 Experiment 3: Case Study of Source Code Reading

To evaluate the effectiveness of our visualization tech-
nique, we had 16 participants work on program understand-
ing tasks. Out of these, 12 participants were graduate stu-
dents studying software engineering. They were familiar
with Java, as they implemented tools for their research in
Java. Four participants were software developers working
in a software company. They developed package software
or enterprise applications written in Java.

We selected JEdit, an open source text editor, as the
target program as no participants had knowledge of or ex-
perience with its source code. JEdit has a functionality that
generates a beep sound when JEdit cannot execute an action
specified by a user. Such a code fragment frequently appears
in JEdit. We asked the participants to identify conditions
in which the beep sound was generated and to explain how
the if statements are affected by the external environment,
such as actions conducted by a user, the status of GUI com-
ponents, and the status of a file system. The reason why we
chose if statements is that understanding precise if condi-
tions is important for debugging tasks [24].

Figure 3 shows two randomly selected source code lo-

KASHIMA et al.: VARIABLE DATA-FLOW GRAPH FOR LIGHTWEIGHT PROGRAM SLICING AND VISUALIZATION
9

VFS

boolean load(View,Buffer,String)

JEditBuffer

boolean isReadOnly()

void setFileReadOnly(boolean)

void setReadOnly(boolean)

boolean isEditable()

Buffer

int checkFileStatus(View)

void finishSaving(View,String,String,String,boolean,boolean)

boolean checkFileForLoad(View,VFS,String)

void setPath(String)

called

true void setReadOnly (boolean)

called

readOnly readOnlyOverride

return

||

readOnly

||

called

boolean isReadOnly ()called

readOnly

=

=

called

called

newReadOnly void setFileReadOnly (boolean)

called

false void setFileReadOnly (boolean)

called

void setFileReadOnly (boolean)

called

true
void setFileReadOnly (boolean)

2 node more ...

4 node more ...

Fig. 4: A screen shot of a VDFG-based program slice for JEdit

public void actionPerformed(...) {
...
if (editor.getAbbrev() == null ||
editor.getAbbrev().length() == 0) {

getToolkit().beep(); // 153
return;

}
...

}

(a) TaskA: EditAbbrevDialog.java, Line 153

public void undo(TextArea textArea)
{

...
if (!isEditable())
{

textArea.getToolkit().beep(); // 2038
return ;

}
...

}

(b) TaskB: JEditBuffer.java, Line 2038

Fig. 3: Program Comprehension Task Targets

cations in JEdit 4.3pre11. In Task A, a beep sound is gener-
ated if a text input widget has no text that must be specified
by a user to execute the command. In Task B, a beep sound
is generated if file editing is not permitted by the file sys-
tem. To explain the conditions for Task A and Task B, 8 and
13 methods in JEdit must be investigated, respectively. We
asked the participants to write down their answers manually
on paper.

We assigned two tasks to each participant; one task was
performed using Eclipse enhanced with the VDFG plug-in
and another task using the standard Eclipse 3.4, without our

plug-in. We compared the data-flow paths investigated by
participants in a limited time slot. Note that the minimum
fractal value is set to 0.04 in this experiment. Additionally,
the VDFG tool is used in the source code analysis version
because the API of Eclipse supports accessing abstract syn-
tax tree of the source code.

Figure 4 shows a visualized slice of JEdit, corre-
sponding to a point at which a developer clicked on a
method call instruction isReadOnly() involved in the
isEditable method. The highlighted (yellow) call site
in Figure 4 has an incoming data-flow edge from the
isReadOnly method. The return value depends on the
readOnlyOverride and readOnly fields. The fields
are assigned by the setReadOnly and setFileReadOnly
methods. The setReadOnly method is called by the load
method of a file system class and the setFileReadOnly
method is called by 4 methods in a buffer class. Using the
graph, we can infer how the return value of the isReadOnly
method is determined without reading the actual source
code.

The time for each task was limited to 30 minutes. The
time does not include VDFG construction, as we aimed only
to determine the effectiveness of using the tool and not its
efficiency. We observed the activities of each participant us-
ing a video camera. The tasks were sequentially assigned.
For each participant, we had a 30-minute session in which
we explained the concept of VDFGs and gave a trial task so
that participants could learn our tool. After the introduction,
we assigned an experimental task. 30 minutes later, we in-

10
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

load

 weight=0.25

An argument of

se tPer formingIO(boolean)

(t rue)

save

 weight=0.25

A return value of

i sPer formingIO()

(t rue)

A return value of isEditable()

(false)

checkFileStatus()

weight=0.5

An argument of

se tFi leReadOnly(boolean)

(t rue)

A re turn value of

isFi leReadOnly()

(t rue)

Fig. 5: An example of score computation. The graph is a
simplified version of the answer of Task B.

terrupted the investigation activity and assigned the second
task.

To evaluate the correctness of an answer, we deter-
mined a correct answer for each task prior to the experiment.
The correct answers are defined as data-flow paths. For ex-
ample, Figure 5 is a simplified version of the correct answer
for Task B. The graph has three data-flow paths from dif-
ferent methods: load, save, and checkFileStatus. We
have computed a Score for each answer using the following
function:

Score(A) =
∑
v∈V

w(v)
|path(v,m) ∩ A|
|path(v,m)|

In this function, A is a set of data-flow edges included
in the answer of a participant, V is a set of source ver-
tices of data-flow paths in the correct answer, m is the tar-
get method where beep sound is generated, and w(v) is a
weight value for each vertex determined by fractal values
[6], as described in Section 3.2. If an answer included a
gray part of Figure 5, the answer included three of three
edges for load, two of three edges for save and one of
three edges for checkFileStatus. The resulting score was
0.25 ∗ 3

3 + 0.25 ∗ 2
3 + 0.5 ∗ 1

3 = 0.583.
Table 4 shows the assigned tasks and resulting scores

for each participant. The average score of participants work-
ing with VDFG was 0.79, while the average score of partic-
ipants working with the standard Eclipse environment was
0.71. A Wilcoxon signed-rank test demonstrated that the
difference between the two groups was statistically signifi-
cant (p=0.03). The visualization of the VDFG enabled par-
ticipants to more completely discover and interpret the data-
flow paths implicated in the task.

We observed that a visualized VDFG is frequently used
by participants. After the participants selected a method or
a variable to obtain a VDFG, they repeatedly selected a re-
turn value vertex or a method parameter vertex in the graph
to read source code. Without VDFG, participants had to
identify data-flow paths using a call graph view and several
search functionalities provided by Eclipse.

We additionally observed that participants used VDFG
to recognize where they investigated. When the value of a
variable depended on two or more methods, participants had

Table 4: The resultant scores. “/VDFG” indicates that a
participant used VDFG for the task.

Score
Participant 1st Task 2nd Task with VDFG w/o VDFG
P1 (Student) A/VDFG B 0.857 0.781
P2 (Student) A/VDFG B 1.000 0.723
P3 (Student) A/VDFG B 1.000 0.621
P4 (Industry) A/VDFG B 0.857 0.652
P5 (Student) A B/VDFG 0.875 0.857
P6 (Student) A B/VDFG 0.708 0.429
P7 (Student) A B/VDFG 0.621 0.571
P8 (Industry) A B/VDFG 0.760 1.000
P9 (Student) B/VDFG A 0.733 0.714
P10 (Student) B/VDFG A 0.858 1.000
P11 (Student) B/VDFG A 0.817 0.714
P12 (Industry) B/VDFG A 0.590 0.429
P13 (Student) B A/VDFG 0.714 0.590
P14 (Student) B A/VDFG 0.857 0.723
P15 (Student) B A/VDFG 1.000 0.908
P16 (Industry) B A/VDFG 0.429 0.671
Mean 0.792 0.711
Median 0.836 0.714

to investigate one of data-flow paths and come back to the
variable. On the other hand, participants working without
VDFG had trouble identifying their previous source code
locations. Several participants lost their previous locations
and had to restart their investigation from the starting points
of the tasks.

Although 13 of 16 participants performed better us-
ing VDFG, three participants (P8, P10, and P16) performed
better using Eclipse. P16 has the worst score for VDFG
because he did not write down several data-flow paths in
his answer, even though he appears to have actually investi-
gated those paths. On the other hand, P8 and P10 answered
the correct data-flow using regular Eclipse. They were fa-
miliar with Eclipse; thus, they often clicked on a variable
name to highlight the variable and quickly scrolled the ed-
itor using the mouse wheel to identify the data-flow paths
related to the variable. P8 and P10 also frequently used key-
board shortcuts to obtain method call and field access rela-
tionships. Although our VDFG visualized the same infor-
mation they obtained, the behavior of these two participants
was much faster using the regular Eclipse without our plug-
in.

Participants appeared to not be disturbed by the pre-
cision of our data-flow analysis. As described in Section
3.1, VDFG may include infeasible edges because of the ap-
proximations of control and data dependencies. Indeed, an
infeasible path results from the following code fragment for
Task A:

dialog = new EditAbbrevDialog(..., abbrev, ...);
abbrev = dialog.getAbbrev();

Variable abbrev in the first line does not depend on
the second line. Our VDFG visualized a summary data-flow
edge from the return value of getAbbrev to a parameter
of the constructor call EditAbbrevDialog. However, par-
ticipants read the source code in a few seconds and simply

KASHIMA et al.: VARIABLE DATA-FLOW GRAPH FOR LIGHTWEIGHT PROGRAM SLICING AND VISUALIZATION
11

ignored the infeasible edge.
Our data-flow analysis ignores library classes. For

example, a method call JTextField.setText has no
data-flow path to the return value of a method call
JTextField.getText. However, the participants never
complained about the lack of such data-flow paths. Instead,
they have investigated data-flow paths of the JTextField
variable to find the caller methods of setText and
getText.

4.4 Threats to Validity

In the first experiment, we approximated the correspondence
relationships of a local variable vertex and a field vertex be-
tween VDFG and IMP. We believe that the approximation
is appropriate, but that the approximation may increase the
accuracy of vertices and edges.

In the second experiment, we measured the number of
vertices and distance from the instructions, and then evalu-
ated the effectiveness of a slice for visualization. Unfortu-
nately, the appropriate number of vertices and distance for
effective visualization is unknown. However, we showed
that the number of vertices is suppressed to only dozens
and a slice may include distant points. In addition, the case
study showed that our visualized slices were effective for de-
velopers to achieve program understanding. Therefore, we
believe that our fractal value technique provides a human-
manageable but informative slice.

The targets of the first and second experiments in-
cluded only six applications. However, these applications
were practically used and were not toy programs. Addition-
ally, there was not a large difference in the results of each
application. Therefore, we believe that the results can be
generalized.

In the case study, the analysis target consisted of just
one application and two tasks. The results of the case study
may be application-specific, i.e., VDFG is precise only in
the case of the tested application. However, in the other
experiments, we used six applications for evaluation. The
results of the other experiments show that visualized sub-
graphs from VDFG are precise when compared to the state-
of-the-art program slicing technique.

Another possible criticism of our case study was
whether it was appropriate or not. If the tasks were slightly
different from practical work, the result does not truly
demonstrate the effectiveness of VDFG in practice. How-
ever, the study of Latoza et al. [1] showed that developers
often face the question, “In what situations is this method
called?”, which is essentially equivalent to our tasks. There-
fore, VDFG should be useful in practical work.

The other possible criticism was that we did not com-
pare our technique and the visualization technique proposed
by Krinke [5]. However, as mentioned in Section 2, the
traditional program slicing technique is too heavyweight to
support daily tasks, which is the main goal of our proposed
technique. Therefore, we think that this does not matter to
the validity.

5. Conclusion and Future Work

We proposed a VDFG-based program slicing technique and
its visualization using fractal value. We performed three ex-
periments. The first experiment demonstrated the accuracy
of our slicing technique compared to a state-of-the-art pro-
gram slicing technique. The second experiment showed that
a slice obtained using our technique included a dozen ver-
tices and a portion spanning from the criteria. The third ex-
periment indicated that our proposed technique was indeed
helpful for source code understanding tasks. In addition, de-
velopers did not consider the inherent systems’ limitations
as a problem, as the developers knew that various features
of Eclipse are also flow-insensitive, context-insensitive, and
object-insensitive.

Future work includes the comprehensive comparison
of our technique and other visualization tools, such as Why-
line [17] and a tool proposed by Krinke [5]. In the com-
parison, we need to investigate the effectiveness of the tools
for not only data flow investigation task, but also the other
practical program comprehension tasks, such as reachability
questions [1]. Another direction of the future work includes
applying our flow-insensitive data-flow analysis to approxi-
mate slice-based software metrics [25].

Acknowledgments

We thank Mr.Takeshi Murayama and developers of Hi-
tachi Government & Public Corporation System Engineer-
ing, Ltd. for supporting our experiment. This work was
supported by JSPS KAKENHI Grant Number 26280021.

References

[1] T.D. LaToza and B.A. Myers, “Developers ask reachability ques-
tions,” Proc. ICSE, pp.185–194, 2010.

[2] A.J. Ko, B.A. Myers, M.J. Coblenz, and H.H. Aung, “An exploratory
study of how developers seek, relate, and collect relevant informa-
tion during software maintenance tasks,” IEEE Trans. Softw. Eng.,
vol.32, no.12, pp.971–987, Dec. 2006.

[3] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing using
dependence graphs,” Proc. PLDI, pp.35–46, 1988.

[4] Y. Kashima, T. Ishio, and K. Inoue, “Comparison of backward slic-
ing techniques for java,” IEICE, vol.98, no.1, pp.–, Jan. 2015.

[5] J. Krinke, “Visualization of program dependence and slices,” Proc.
ICSM, pp.168–177, 2004.

[6] H. Koike, “Fractal views: A fractal-based method for controlling
information display,” ACM Trans. Inf. Syst., vol.13, no.3, pp.305–
323, July 1995.

[7] C. Hammer and G. Snelting, “An improved slicer for java,” Proc.
PASTE, pp.17–22, 2004.

[8] T. Ishio, S. Etsuda, and K. Inoue, “A lightweight visualization of in-
terprocedural data-flow paths for source code reading,” Proc. ICPC,
pp.37–46, June 2012.

[9] M. Weiser, “Program slicing,” Proc. ICSE, pp.439–449, 1981.
[10] S. Kusumoto, A. Nishimatsu, K. Nishie, and K. Inoue, “Experimen-

tal evaluation of program slicing for fault localization,” Empirical
Softw. Eng., vol.7, no.1, pp.49–76, March 2002.

[11] K. Chen and V. Rajlich, “Case study of feature location using de-
pendence graph,” Proc. IWPC, pp.241–, 2000.

12
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

[12] X. Wang, D. Lo, J. Cheng, L. Zhang, H. Mei, and J.X. Yu, “Matching
dependence-related queries in the system dependence graph,” Proc.
ASE, pp.457–466, 2010.

[13] J. Jasz, A. Beszedes, T. Gyimothy, and V. Rajlich, “Static execute
after/before as a replacement of traditional software dependencies,”
Proc. ICSM, pp.137–146, Sept 2008.

[14] T.T. Nguyen, H.A. Nguyen, N.H. Pham, J.M. Al-Kofahi, and T.N.
Nguyen, “Graph-based mining of multiple object usage patterns,”
Proc. FSE, pp.383–392, 2009.

[15] A. Bragdon, S.P. Reiss, R. Zeleznik, S. Karumuri, W. Cheung, J. Ka-
plan, C. Coleman, F. Adeputra, and J.J. LaViola, Jr., “Code bubbles:
Rethinking the user interface paradigm of integrated development
environments,” Proc. ICSE, pp.455–464, 2010.

[16] M. Pinzger, K. Graefenhain, P. Knab, and H.C. Gall, “A tool for
visual understanding of source code dependencies,” Proc. ICPC,
pp.254–259, 2008.

[17] A.J. Ko and B.A. Myers, “Designing the whyline: A debugging in-
terface for asking questions about program behavior,” Proc. CHI,
pp.151–158, 2004.

[18] J. Dean, D. Grove, and C. Chambers, “Optimization of object-
oriented programs using static class hierarchy analysis,” Proc.
ECOOP, pp.77–101, 1995.

[19] H. Shah, C. Görg, and M.J. Harrold, “Visualization of exception
handling constructs to support program understanding,” Proc. Soft-
Vis, pp.19–28, 2008.

[20] “Graphviz project.” http://www.graphviz.org/.
[21] O. Lhoták and L. Hendren, “Scaling java points-to analysis using

spark,” Proc. CC, pp.153–169, 2003.
[22] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sun-

daresan, “Soot - a java bytecode optimization framework,” Proc.
CASCON, pp.13–, IBM Press, 1999.

[23] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe,
H. Melton, and J. Noble, “Qualitas corpus: A curated collection of
java code for empirical studies,” Proc. APSEC, pp.336–345, Dec.
2010.

[24] K. Pan, S. Kim, and E.J. Whitehead, Jr., “Toward an understanding
of bug fix patterns,” Empirical Softw. Eng., vol.14, no.3, pp.286–
315, June 2009.

[25] T.M. Meyers and D. Binkley, “An empirical study of slice-based co-
hesion and coupling metrics,” ACM Trans. Softw. Eng. Methodol.,
vol.17, no.1, pp.2:1–2:27, Dec. 2007.

