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a b s t r a c t

One of the widely used techniques to improve the quality of software systems is refactoring. Software

refactoring improves the internal structure of the system while preserving its external behavior. These two

concerns drive the existing approaches to refactoring automation. However, recent studies demonstrated

that these concerns are not enough to produce correct and consistent refactoring solutions. In addition

to quality improvement and behavior preservation, studies consider, among others, construct semantics

preservation and minimization of changes. From another perspective, development history was proven as a

powerful source of knowledge in many maintenance tasks. Still, development history is not widely explored

in the context of automated software refactoring. In this paper, we use the development history collected

from existing software projects to propose new refactoring solutions taking into account context similarity

with situations seen in the past. We propose a multi-objective optimization-based approach to find good

refactoring sequences that (1) minimize the number of code-smells, and (2) maximize the use of development

history while (3) preserving the construct semantics. To this end, we use the non-dominated sorting genetic

algorithm (NSGA-II) to find the best trade-offs between these three objectives. We evaluate our approach

using a benchmark composed of five medium and large-size open-source systems and four types of code-

smells (Blob, spaghetti code, functional decomposition, and data class). Our experimental results show the

effectiveness of our approach, compared to three different state-of-the-art approaches, with more than 85%

of code-smells fixed and 86% of suggested refactorings semantically coherent when the change history is

used.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

During software maintenance and evolution, software systems un-

dergo continuous changes, through which new features are added,

bugs are fixed, and business processes are adapted constantly (Mens

and Demeyer, 2008; Zimmermann et al., 2005). To support these ac-

tivities, many tools emerged to manage source code such as con-

current versions system (CVS), and subversion (SVN) (Cederqvist and

Dec, 2003) where all documentation, configuration, and code-changes

are archived and called “software-development history”. Hence, these

historical data in software engineering provide a lot of solid knowl-

edge that can be used to make sound data driven decisions for solving

many software engineering problems (Ratzinger et al., 2007; Soetens

et al., 2013; Beyer and Noack, 2005; Ying et al., 2004) and designing
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oftware engineering tools (Hassan and Holt, 2004; Gall et al., 1998;

atiu et al., 2004). Furthermore, reuse is a common practice for de-

elopers during software development/maintenance to save time and

fforts.

One of the widely used techniques during software develop-

ent/maintenance to improve code quality is refactoring, the process

f improving the internal structure of software systems without af-

ecting its overall behavior (Opdyke, 1992). In general, to apply refac-

oring, we need to identify (1) where a program should be refactored

nd (2) which refactorings to apply (Fowler et al., 1999; Mens and

ourwé, 2004). Automating the refactoring suggestion task is essen-

ial and useful to efficiently help software developers in improving

he quality of their code such as reusability, maintainability, flexibil-

ty, and understandability, etc.

Recently,search-based approaches have been applied to automate

oftware refactoring (O’Keeffe and Cinnéide, 2006; Ouni et al., 2012;

arman and Tratt, 2007; Seng et al., 2006). Most of these works

ormulated refactoring as a single-objective optimization problem,

n which the main goal is to improve code quality while preserving
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he behavior (see, for example, O’Keeffe and Cinnéide, 2006; Seng

t al., 2006; Kessentini et al., 2011; Qayum and Heckel, 2009). In

ther works, other objectives are also considered such as reducing

he effort (number of code changes) (Ouni et al., 2013a), preserving

emantic coherence (Ouni et al., 2012), and improving quality met-

ics (O’Keeffe and Cinnéide, 2006). However, structural and semantic

nformation are not, sometimes, enough to generate powerful refac-

oring strategies (Ouni et al., 2013b,c).

The use of development history can be helpful to propose efficient

efactoring solutions (Ouni et al., 2013b,c). Code fragments that are

odified over the past in the same period are semantically connected

i.e. belong to the same feature). Furthermore, fragments that are ex-

ensively refactored in the past bear a high probability for refactoring

n the future. Moreover, code fragments to refactor can be similar

o some patterns that can be found in the development history thus

evelopers can easily reuse and adapt them. However, despite its

mportance, the history of code changes has not been widely inves-

igated/used in the context of refactoring (Ouni et al., 2013c; Kagdi

t al., 2007).

To the best of our knowledge, the use of historical data to auto-

ate software refactoring is not explored before our recent work in

uni et al. (2013c). In this paper, we extend this work, published in

ECCO 2013 (Ouni et al., 2013c), which uses the change history of a

oftware system to suggest new refactoring opportunities to fix code-

mells (Ouni et al., 2013c). We considered three different measures:

a) similarity with previous refactorings applied to the same code

ragments within the same system, (b) number of changes applied in

he past to the same code elements to be refactored, and (c) a score

hat characterizes the co-change of elements that will be refactored.

he approach was successfully applied and evaluated on two differ-

nt software systems using their change history and three types of

ode smells. However, the proposed approach can be applied only to

ystems with existing histories of changes.

In this paper, we consider the situation when the change history

s not available or when we deal with newly developed software sys-

ems. We extend our previous work (Ouni et al., 2013c) by considering

he history of past refactorings, applied to similar contexts, borrowed

rom different software projects. The primary contributions of this

aper can be summarized as follows:

(1) We introduce a novel measure that aims at calculating the

context similarity score between proposed refactoring opera-

tions, and a set of refactorings collected from different software

projects.

(2) We define an extended formulation of the mutation genetic

operator to better explore the search space.

(3) We extend the evaluation of the approach. We present an em-

pirical study based on a quantitative and qualitative evaluation

using (a) three additional subject systems, (b) an additional

type of code-smells, and (c) two new quantitative evaluation

metrics, hypervolume and spread (Zitzler et al., 2003; Deb,

2009), to better evaluate the performance of our approach. The

quantitative evaluation investigates whether our approach is

able to improve software quality while fixing code-smells using

the development change history. For the qualitative evaluation,

we evaluated the efficiency of our approach with three subjects

from both academia and industry.

Our experimental results show that most of the detected code-

mells were fixed with an average of 85%, and an average of 86%

f suggested refactorings were semantically coherent. In addition,

tatistical analysis of our experiments over 31 runs shows that NSGA-

I performed significantly better than state-of-the-art metaheuristic

echniques in terms of hypervolume and spread (Zitzler et al., 2003;

eb, 2009).

The rest of this paper is organized as follows: Section 2 describes

he relevant background and summarizes the related work in which
he current paper is located; Section 3 describes the refactoring chal-

enges through a motivating example. Section 4 describes the used

ulti-objective search-based algorithm and its design. Experimen-

al results and evaluation of the approach are reported in Section 5.

ection 6 is dedicated to the discussion, while Section 7 presents the

hreats to validity. Finally, concluding remarks and directions for fu-

ure work are provided in Section 8.

. Background

.1. Definitions

.1.1. Code-smells

Code-smells, also called anomalies (Fowler et al., 1999), anti-

atterns (Brown et al., 1998), design flaws (Marinescu, 2004) or bad

mells (Fowler et al., 1999), are problems resulting from bad design

nd programming practices and refer to situations that adversely af-

ect the software maintenance and evolution. According to Fowler

t al. (1999), code-smells are unlikely to cause failures directly, but

ay do it indirectly. In general, they make a system difficult to change,

hich may in turn introduce bugs. Different types of code-smells,

resenting a variety of symptoms, have been studied in the intent

f facilitating their detection (Moha et al., 2010) and suggesting im-

rovement solutions. Most of code-smells identify locations in the

ode that violate object-oriented design heuristics, such as the sit-

ations described by Riel (1996) and by Coad and Yourdon (1991).

ode-smells are not limited to design flaws since most of them occur

n code and are not related to the original design. In fact, most of

ode-smells can emerge during the evolution of a system. In Fowler

t al. (1999), Beck defines 22 sets of symptoms of code-smells and

roposes the different possible refactoring solutions to improve the

ystem design. These include large classes, feature envy, long param-

ter lists, and lazy classes. Each code-smell type is accompanied by

efactoring suggestions to remove it. Van Emden and Moonen (2002)

eveloped one of the first automated code-smell detection tools for

ava programs. Mantyla studied the manner of how developers de-

ect and analyze code smells (Mäntylä et al., 2003). Previous empirical

tudies have analyzed the impact of code-smells on different software

aintainability factors including defects (Monden et al., 2002; Li and

hatnawi, 2007; Sjoberg et al., 2013) and effort (Deligiannis et al.,

003, 2004). In fact, software metrics (quality indicators) are some-

imes difficult to interpret and suggest some actions (refactoring) as

oted by Marinescu (2004) and Anda et al. (Mens and Demeyer, 2008).

ode-smells are associated with a generic list of possible refactorings

o improve the quality of software systems. In addition, Yamashita

nd Moonen (2013a,b) show that the different types of code-smells

an cover most of maintainability factors (Yamashita and Moonen,

012). Thus, the detection of code-smells can be considered as a good

lternative of the traditional use of quality metrics to evaluate the

uality of software products. Brown et al. (1998) define another cate-

ory of code-smells that are documented in the literature, and named

nti-patterns. In this paper, we focus on the four following code-smell

ypes to evaluate our approach:

- Blob: It is found in designs where one large class monopolizes the

behavior of a system (or part of it), and the other classes primarily

encapsulate data.

- Data class: It contains only data and performs no processing on

these data. It is typically composed of highly cohesive fields and

accessors.

- Spaghetti code: It is a code with a complex and tangled control

structure.

- Functional decomposition: It occurs when a class is designed

with the intent of performing a single function. This is found in

code produced by non-experienced object-oriented developers.
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We decided to focus our attention on these code-smells because

they are among the most related to faults or change proneness

(Khomh et al., 2009) and the most common in the literature and

frequently targeted for detection and correction in recent studies

(see, for example, Kessentini et al., 2011; Ouni et al., 2013a,b,c; Moha

et al., 2010). Hence, various approaches and tools supporting code-

smells detection have been proposed in the literature such as JDeodor-

ant (Tsantalis et al., 2008), infusion (Infusion hydrogen 2012), Décor

(Moha et al., 2010), iPasma (iPlasma, 0000) Kessentini et al. (2011),

Ouni et al. (2013a). The vast majority of these tools provide different

environments and methods to detect code-smells. However, the cor-

rection is not mature yet, and several problems should be addressed.

2.1.2. Refactoring

One of the well-known development activities that can help fix

code-smells and reduce the increasing complexity of a software sys-

tem is refactoring. Fowler et al. (1999) define refactoring as a disci-

plined technique for restructuring an existing body of code, altering

its internal structure without changing its external behavior. The no-

tion of refactoring was introduced by Opdyke (1992), which provided

a catalogue of refactorings that could be applied in specific situa-

tions (Opdyke, 1992). The idea is to reorganize variables, classes and

methods to facilitate future adaptations and extensions. This reor-

ganization is used to improve different aspects of software-quality

such as maintainability, extensibility, reusability, etc. (Fowler et al.,

1999; Mens and Tourwé, 2004). For these precious benefits on design

quality, some modern integrated development environments (IDEs),

such as Eclipse,1 NetBeans,2 and Refactoring Browser,3 provide semi-

automatic support for applying the most commonly used refactor-

ings, e.g., move method, rename class, etc. However, automatically

suggesting/deciding where and which refactorings to apply is still

a real challenge in software engineering. Roughly speaking, we can

identify two distinct steps in the refactoring process: (1) detect where

a program should be refactored and (2) identify which refactorings

should be applied (Fowler et al., 1999).

2.1.3. Construct semantics

Construct semantics represents the semantic coherence in the

structure of program entities. In object-oriented (OO) programs, ob-

jects reify domain concepts and/or physical objects. They implement

their characteristics and behavior. Unlike for other programming

paradigms, grouping data and behavior into classes is not guided by

development or maintenance considerations. Operations and fields of

classes characterize the structure and behavior of the implemented

domain elements. Consequently, a program could be syntactically

correct, implement the right behavior, but violates the domain and

construct semantics if the reification of domain elements is incorrect.

During the initial design/implementation, programs capture well the

construct semantic when the OO principles are applied. However,

when these programs are (semi) automatically modified during main-

tenance, the adequacy with domain semantics could be compromised.

To this end, it is important to preserve the construct semantics during

refactoring.

2.2. Related work

In this section, we review and discuss related work on software

refactoring, and the use of change history for several purposes in soft-

ware engineering. A large number of research works have addressed

the problem of code-smells correction and software refactoring in
1 http://www.eclipse.org/.
2 https://netbeans.org/.
3 http://www.refactory.com/refactoring-browser.
ecent years. We start by surveying those works that can be classi-

ed mainly into two broad categories: manual and semi-automated

pproaches, and search-based approaches.

.2.1. Manual and semi-automated approaches

We start by summarizing existing manual and semi-automated

pproaches for software refactoring. In Fowler’s book (Fowler et al.,

999), a non-exhaustive list of low-level design problems in source

ode has been defined. For each design problem (i.e., code-smell), a

articular list of possible refactorings is suggested to be applied by

oftware maintainers manually. Indeed, in the literature, most of the

xisting approaches are based on quality metrics improvement to deal

ith refactoring. Sahraoui et al. (2000) have proposed an approach to

etect opportunities of code transformations (i.e., refactorings) based

n the study of the correlation between some quality metrics and

efactoring changes. To this end, different rules are defined as a com-

ination of metrics/thresholds to be used as indicators for detect-

ng code-smells and refactoring opportunities. For each code-smell

pre-defined and standard list of transformations should be applied

n order to improve the quality of the code. Another similar work is

roposed by Du Bois et al. (2004) who starts from the hypothesis that

efactoring opportunities correspond of those which improve cohe-

ion and coupling metrics to perform an optimal distribution of fea-

ures over classes. Du Bois et al. analyze how refactorings manipulate

oupling and cohesion metrics, and how to identify refactoring oppor-

unities that improve these metrics. However, these two approaches

re limited to only some possible refactoring operations with a small

et of quality metrics. In addition, improving some quality metrics

oes not mean that existing code-smells are fixed.

Moha et al. (2008) proposed an approach that suggests refactor-

ngs using formal concept analysis (FCA) to correct detected code-

mells. This work combines the efficiency of cohesion/coupling met-

ics with FCA to suggest refactoring opportunities. However, the link

etween code-smells detection and correction is not obvious, which

ake the inspection difficult for the maintainers. Similarly, Joshi and

oshi (2009) have presented an approach based on concept analy-

is aimed at identifying less-cohesive classes. It also helps identify

ess-cohesive methods, attributes and classes in one go. Further, the

pproach guides refactoring opportunity identification such as ex-

ract class, move method, localize attributes and remove unused at-

ributes. In addition, Tahvildari and Kontogiannis (2003) also pro-

osed a framework of object-oriented metrics used to suggest to the

oftware engineer refactoring opportunities to improve the quality of

n object-oriented legacy system.

Other contributions are based on rules that can be expressed as

ssertions (invariants, pre and post-condition). The use of invariants

as been proposed to detect parts of code that require refactoring

y Kataoka et al. (2001). In addition, Opdyke (1992) has proposed

the definition and the use of pre- and post-condition with invariants

to preserve the behavior of the software when applying refactoring.

Hence, behavior preservation is based on the verification/satisfaction

of a set of pre and post-condition. All these conditions are expressed

in terms of rules.

The major limitation of these manual and semi-automated ap-

proaches is that they try to apply refactorings separately without

considering the whole program to be refactored and its impact on

the other artifacts. Indeed, these approaches are limited to only some

possible refactoring operations and a few quality metrics to assess

quality improvement. In addition, improving some quality metrics

does mean necessary that actual code-smells are fixed.

2.2.2. Search-based approaches

Search-based approaches can be classified into two main cate-

gories: mono-objective and multi-objective optimization approaches.

In the first category, the majority of the existing work combines

several metrics in a single fitness function to find the best sequence

http://www.eclipse.org/
https://netbeans.org/
http://www.refactory.com/refactoring-browser
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f refactorings. Seng et al. (2006) have proposed a single-objective

ptimization-based approach using genetic algorithm to suggest a

ist of refactorings to improve software quality. The search process

ses a single fitness function to maximize a weighted sum of sev-

ral quality metrics. The used metrics are mainly related to various

lass level properties such as coupling, cohesion, complexity and sta-

ility. Indeed, the authors have used some pre-conditions for each

efactoring. These conditions serve at preserving the program behav-

or (refactoring feasibility). However, in this approach, the semantic

oherence of the refactored program is not considered. In addition,

he approach was limited only on the refactoring operation “move

ethod”. Furthermore, there is another similar work of O’Keeffe and

innéide (2006) that have used different local search-based tech-

iques such as hill climbing and simulated annealing to provide an

utomated refactoring support. Eleven object-oriented design met-

ics have been used to evaluate the quality improvement. One of the

arliest works on search-based approaches is the work by Qayum and

eckel (2009) who considered the problem of refactoring scheduling

s a graph transformation problem. They expressed refactorings as

search for an optimal path, using ant colony optimization, in the

raph where nodes and edges represent respectively refactoring can-

idates and dependencies between them. However the use of graphs

s limited only on structural and syntactical information and therefore

oes not consider the domain semantics of the program neither its

untime behavior. Furthermore, Fatiregun et al. (2004) showed how

earch-based transformations could be used to reduce code size and

onstruct amorphous program slices. They have used small atomic

evel transformations in their approach. In addition, their aim was

o reduce program size rather than to improve its structure/quality.

ecently, Kessentini et al. (2011) have proposed a single-objective

ombinatorial optimization using genetic algorithm to find the best

equence of refactoring operations that improve the quality of the

ode by minimizing as much as possible the number of code-smells

etected on the source code. Also, Otero et al. (2010) use a new search-

ased refactoring. The main idea behind this work is to explore the

ddition of a refactoring step into the genetic programming iteration.

here will be an additional loop in which refactoring steps drawn

rom a catalogue of such steps will be applied to individuals of the

opulation. Jensen and Cheng (2010) have proposed an approach that

upports composition of design changes and makes the introduction

f design patterns a primary goal of the refactoring process. They used

enetic programming and software metrics to identify the most suit-

ble set of refactorings to apply to a software design. Furthermore,

ilic et al. (2011) explore the use of a variety of population-based ap-

roaches to search-based parallel refactoring, finding that local beam

earch could find the best solutions.

In the second category of work, Harman and Tratt (2007) have pro-

osed a search-based approach using Pareto optimality that combines

wo quality metrics, CBO (coupling between objects) and SDMPC

standard deviation of methods per class), in two separate objective

unctions. The authors start from the assumption that good design

uality results from a good distribution of features (methods) among

lasses. Their Pareto optimality-based algorithm succeeded in find-

ng good sequence of “move method” refactorings that should pro-

ide the best compromise between CBO and SDMPC to improve code

uality. However, one of the limitations of this approach is that it is

imited to unique refactoring operation (move method) to improve

oftware quality and only two metrics to evaluate the preformed im-

rovements. Recently, Ó Cinnéide et al. (2012) have proposed a multi-

bjective search-based refactoring to conduct an empirical investiga-

ion to assess some structural metrics and to explore relationships

etween them. To this end, they have used a variety of search tech-

iques (Pareto-optimal search, semi-random search) guided by a set

f cohesion metrics. One of the earliest works on multi-objective

earch based refactoring is the work by Ouni et al. (2013a) who pro-

osed a multi-objective optimization approach to find the best se-
uence of refactorings using NSGA-II. The proposed approach is based

n two objective functions, quality (proportion of corrected code-

mells) and code modification effort, to recommend a sequence of

efactorings that provide the best trade-off between quality and effort.

To conclude, the vast majority of existing search-based software

ngineering approaches focused only on the program structure im-

rovements. However, the main limitation is that the semantics

reservation is not considered in the search process. Moreover, sug-

esting new refactorings should not be made independently to previ-

us changes and maintenance/development history. This is one of the

ost relevant limitations on search-based refactoring approaches,

hich do not consider how the software has been changed and

volved and how software elements are impacted by these changes.

.2.3. The use of historical data in software engineering

There is some few research work that uses the change history

n the context of refactoring. Soetens et al. (2013) proposed an ap-

roach to detect (reconstruct) refactorings that are applied between

wo software versions based on the change history. The scope of this

ontribution is different than the one proposed in this paper, since

ur aim is to suggest refactoring solutions to be applied in the future

o improve software quality while maintaining the consistency with

he change history. Ratzinger et al. (2007) used change history mining

o predict the likelihood of a class to be refactored in the next two

onths using machine learning techniques. Their goal is to identify

lasses that are refactoring or non-refactoring prone. In their predic-

ion models they do not distinguish different types of refactorings (e.g.

reate super class, extract method, etc.); they only assess the fact that

evelopers try to improve the design. In contrast, in our approach,

e suggest concrete refactoring solution to improve code quality and

ot only identifying refactoring opportunities.

In addition, data extraction from development history/repository

s very well covered. Research has been carried out to detect and

nterpret groups of software entities that change together. These

o-change relationships have been used for different purposes.

immermann et al. (2005) have used historical changes to point de-

elopers to possible places that need change. In addition historical

ommon code changes are used to cluster software artifacts (Beyer

nd Noack, 2005; Gîrba et al., 2007), to predict source code changes by

ining change history (Zimmermann et al., 2005; Ying et al., 2004),

o identify hidden architectural dependencies (Gall et al., 1998) or to

se them as change predictors (Hassan and Holt, 2004). In addition,

ecently, co-change has been used in several empirical studies in soft-

are engineering. However, in the best of our knowledge, until now,

he development change history is not used for software refactoring.

. Refactoring challenges

.1. Limitations and challenges

Various techniques are proposed to automate the refactoring pro-

ess (Mens and Tourwé, 2004; Ouni et al., 2012, 2013a; Seng et al.,

006; Choinzon and Ueda, 2006; Mens and Tourwé, 2004). Most of

hese techniques are based on structural information using a set of

uality metrics. The structural information is used to ensure that ap-

lied refactorings improve some quality metrics such as the number

f methods/attributes per class, coupling, and cohesion. However, this

ould not be enough to confirm that a refactoring makes sense and

reserves the design semantic coherence. It is important to preserve

he rationale behind why and how code elements are grouped and

onnected.

To solve this issue, semantic measures are used to evaluate refac-

oring suggestions such as those based on coupling and cohesion or

nformation retrieval techniques (e.g. cosine similarity of the used vo-

abulary) (Ouni et al., 2012). However, these semantic measures de-

end heavily on the meaning of code elements name/identifier (e.g.,
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name of methods, name of classes, etc.). Indeed, due to some time-

constraints, developers often select meaningless names for classes,

methods, or fields (e.g., not clearly related to the functionalities). Thus,

it is risky to only use techniques such as cosine similarity to find a

semantic approximation between code fragments. In addition, when

applying a refactoring like move method between two classes many

target classes can have the same values of coupling and cohesion with

the source class. To make the situation worse, it is also possible that

the different target classes have the same structure. Furthermore,

suggesting new refactorings should not be made independently to

previous changes and maintenance/development history. This is one

of the most relevant limitations existing work, which do not consider

how the software has been changed and evolved and how software

elements are impacted by these changes.

To circumvent the above mentioned problems, we use, in this

paper, knowledge mined from past maintenance and development

history to suggest refactoring solutions. Many aspects can help to

improve the automation of refactoring (Ouni et al., 2013c): (1) code

elements which underwent changes in the past, at approximately

the same time, are in general semantically dependent, (2) code ele-

ments changed many times in the past have a good probability to be

“badly-designed”, (3) the development history can be used to propose

new refactoring solutions in similar contexts. However, when we deal

with newly developed software systems or with systems where the

development is not available, other considerations should be taken

into account to find similarities between the new candidate refac-

toring solutions and refactorings applied in other projects in similar

contexts.

3.2. Motivating scenario

To illustrate some of the above-mentioned issues, Fig. 1 shows a

concrete example extracted from JVacation,4 an open-source stan-

dalone travel-booking-client for travel-agencies written in Java.

JVacation was developed in 2007, and contains a large number of

code-smells, which has been at the origin of the slowdown of their de-

velopment. It has not been actively maintained/evolved since its first

release. Consequently, JVacation has no development change history

since it has not been widely used by the open-source community.

We consider a design fragment that contains four classes DBClient,

Booking, CustomerModel and JourneyModel. Using the detection rules

proposed in Ouni et al. (2013a), two code-smells are detected.

The class DBClient is detected as a blob code-smell, and the class

CustomerModel is detected as a data class. One possible refactoring so-

lution to improve the design quality is to move some methods and/or

fields from the blob class to other classes in the program, mainly data

classes. In this way, we will reduce the number of functionalities im-

plemented in the blob class DBClient and add additional behavior/

functionalities to some other data classes such as CustomerModel. A

refactoring is proposed to move the method checkNotation() from

the smelly class DBClient to another suitable class in a way that we

preserve the semantic coherence of the original program. Based on se-

mantic and structural information (Ouni et al., 2012) many other tar-

get classes are possible, including Booking, CustomerModel and Jour-

neyModel using vocabulary-based measures, cohesion and coupling

(Ouni et al., 2012). However, since JVacation has no development

change history, there are no refactorings applied in the past to these

code fragments, and consequently, the history measures we defined

in Ouni et al. (2013c) are not useful for this case.

An alternative solution can be to use the development history of

other projects that are refactored in the past in similar contexts. Thus,

we found in other software projects such as JFreeChart and JHotDraw

similar contexts to our classes to refactor described in Fig. 1. We found
4 https://sourceforge.net/projects/jvacation/. m
n previous versions of JFreeChart some methods (such as drawPrima-

yLinePath(), initialise(), and equals()) that have been moved from the

lass XYLineAndShapeRenderer to the class XYSplineRenderer. More-

ver, we found in JHotDraw that the method draw() has been moved

rom the class ArrowTip to the class AbstractLineDecoration. These

ecorded refactorings in both JFreeChart and JHotDraw are applied

o similar context with the structure of our classes being refactored

n JVacation (i.e., the classes DBClient and CustomerModel). The simi-

arity between code fragments can be estimated using not only quality

etrics (e.g. coupling, number of methods, number of attributes, etc.)

ut also using semantic similarity measures (Ouni et al., 2012). As a

onsequence, moving methods and/or attributes from the class DB-

lient to the class CustomerModel has a high probability of correctness.

hus, in this paper, we are based on the hypothesis that the more a

ecommended refactoring is similar to refactorings applied to differ-

nt software projects in the past in similar contexts, the more the

eaningfulness of the recommended refactoring is high. The idea is

o encourage the reuse of collected refactorings that are applied to

imilar contexts in different software projects.

The refactorings applied in the previous versions of a system can

e detected using existing refactoring detection tools such as Ref-

inder. Several remarkable techniques have been proposed for record-

ng code changes directly in the development framework as they are

pplied by a developer (Kim et al., 2013; Ekman and Asklund, 2004) or

y analyzing two versions of a system and computing the differences

etween them. However, this is the first attempt to use development

istory to propose new refactoring solutions after our contribution in

uni et al. (2013c).

. Multi-objective search-based refactoring

In this section, we give an overview about our proposal where

he use of development history is adapted to overcome the different

imitations discussed in Section 2. Then, we describe our formulation

f the refactoring suggestion problem and how the non-dominated

orting genetic algorithm (NSGA-II) (Deb, 2009) is used.

.1. Approach overview

Our approach aims at exploring a huge search space to find refac-

oring solutions, i.e., a sequence of refactoring operations, to cor-

ect code-smells. We have three objectives to optimize: (1) max-

mize quality improvement (code-smells correction); (2) minimize

he number of construct semantic incoherencies by preserving the

ay how code elements are semantically grouped and connected to-

ether; and (3) maintain the consistency with the previous refactor-

ngs applied to similar contexts using cross-project context similar-

ty. To this end, we consider the refactoring task as a multi-objective

ptimization problem instead of a single-objective one using the non-

ominated sorting genetic algorithm (NSGA-II) (Deb, 2009).

The general structure of our approach is sketched in Fig. 2. It takes

s input the source code of the program to be refactored, a list of pos-

ible refactorings that can be applied, a set of code-smells detection

ules (Ouni et al., 2013a; Kessentini et al., 2011), a set of semantic

easures (Ouni et al., 2012), and a history of applied changes (CVS,

hange log, collected refactorings). Our approach generates as out-

ut the optimal set of refactorings, selected from the list of possible

efactorings, which improves the software quality by minimizing as

uch as possible the number of code-smells, preserving construct

emantics, and maximizing the reuse of development change history

o similar contexts.

.2. Problem formulation

In our previous work (Ouni et al., 2013c), we proposed an auto-

ated approach, to improve the quality of a system while preserving

https://sourceforge.net/projects/jvacation/
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DBClient 

connector : DBConnector 
. . .  

DBClient() 
getObjectList() 
saveObject() 
updateObjectList() 
updateObject() 
deleteObjectList() 
deleteObject() 
getTourOperatorList() 
getTourOperatorObject() 
saveTourOperator() 
updateTourOperatorList() 
updateTourOperator() 
deleteTourOperator() 
deleteTourOperatorList() 
getCustomerList() 
getCustomerObject() 
getAllCustomer() 
getCustomerById() 
searchCustomer() 
saveCustomerList() 
saveCustomer() 
updateCustomerList() 
updateCustomer() 
deleteCustomer() 
deleteCustomerList() 
getLodgingList() 
getLodgingObject() 
getAllLodging() 
getLodgingById() 
searchLodging() 
searchLodgingFilter() 
saveLodgingList() 
saveLodging() 
updateLodgingList() 
updateLodging() 
deleteLodging() 
deleteLodgingList() 
getBookingList() 
getBookingObject() 
getAllBooking() 
getBookingById() 
searchBooking() 
saveBookingList() 
saveBooking() 
updateBookingList() 
updateBooking() 
deleteBooking() 
deleteBookingList(List) 
getBookingLodgingList() 
getBookingLodgingObject() 
getAllBookingLodging() 
getBookingLodgingById() 
searchBookingLodging() 
saveBookingLodgingList() 
saveBookingLodging() 
updateBookingLodgingList() 
updateBookingLodging() 
deleteBookingLodging() 
deleteBookingLodgingList() 
getFlightList() 
getFlightObject() 
getAllFlight() 
getFlightById() 
searchFlights() 
getAiportMap() 
. . .  Code-smell: Blob 

Booking 
_ID : String 
_BOOKING_ID : String 
_CUSTOMER_ID : String 
_DB_PRIMARY_KEY : String 
_DB_TABLE : Table 
booking_id : int 
customer_id : int 
flight_id : int 
booked_places : int 
travellers : String 
price : float 
. . .  

 Booking() 
Booking() 
getBooked_places() 
setBooked_places() 
getBooking_id() 
setBooking_id() 
getCustomer_id() 
setCustomer_id() 
getFlight_id() 
setFlight_id() 
getPrice() 
setPrice() 
getTravellers() 
setTravellers() 
toString() 

JourneyModel 
controller : MaintenanceController 
bookingList : List<Booking> 
bookingLodgingList : List<BookingLodging> 

JourneyModel() 
addChangeListener() 
fireStateChanged() 
getBookingLodgingList() 
getBookingList() 
deleteBooking(Booking) 
deleteBookingLodging() 
getTableDataBooking() 
getTableDataBookingLodging() 
searchBookingLodgingFilter() 
searchBookingFilter() 
getAllBookingLodgingList() 
getAllBookingList() 

 

Code-smell: Data class 

CustomerModel 
controller : MaintenanceController 
customerList : List<Customer> 
CustomerModel() 
addChangeListener() 
fireStateChanged() 
getCustomerList() 
searchCustomer() 
getAllCustomerList() 
addCustomer() 
deleteCustomer() 
getTableData() 

Fig. 1. Design fragment extracted from JVacation v1.0.
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Versioning System

Collected 
refactorings

Available refactoring 
operations

Historical data

Co-change 
Matrix

Classes change 
frequency

Suggested refactoring 
solutions

Semantic 
similarity

Original source
code

Search-based Refactoring 

(NSGA-II)

Fig. 2. The use of development history for recommending software refactoring: an overview.
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its construct semantics. It uses multi-objective optimization to find

the best compromise between code quality improvement and con-

struct semantics preservation. Improving software quality corre-

sponds to correcting code-smells. We used code-smell detection

rules, proposed in our previous work (Ouni et al., 2013a), to find the

best refactoring solutions, from the list of possible refactorings, which

should fix as much as possible the number of detected code-smells. On

the other hand, preserving the construct semantics after applying the

suggested refactorings is ensured by maximizing different semantic

measures: (1) vocabulary-based similarity (cosine similarity between

words: name of code elements); and (2) dependency-based similar-

ity (call-graph, coupling and cohesion) (Ouni et al., 2012). Moreover,

we seek to maximize the use of development history to improve the

construct semantics preservation.

Due to the large number of possible refactoring solutions and the

conflicting objectives related to the quality improvements and the

construct semantic preservation, we considered the refactoring as a

multi-objective optimization problem instead of a single-objective

one (O’Keeffe and Cinnéide, 2006; Seng et al., 2006; Kessentini et al.,

2011). The search-based process takes as inputs, the source code,

code-smells detection rules, a set of refactoring operations, and a call

graph for the whole program. As output, our approach recommends a

set of refactoring solutions. A solution consists of a sequence of refac-

toring operations that should be applied to improve the quality of the

input code. The used detection rules are expressed in terms of met-

rics and threshold values. Each rule detects a specific code-smell type

(e.g., blob, spaghetti code, functional decomposition, etc.) and is ex-

pressed as a logical combination of a set of quality metrics/threshold

values (Kessentini et al., 2011; Ouni et al., 2013a). The process of

generating a correction solution (refactorings) can be viewed as the

mechanism that finds the best list among all available refactoring op-

erations that best reduces the number of detected code-smells and

at the same time, preserves the construct semantics of the initial
rogram. In other words, this process aims at finding the best trade-

ff between these two conflicting criteria.

We extend, in this paper, our previous work (Ouni et al., 2013c)

y considering the history of collected refactorings from different

oftware projects applied to similar contexts. Concretely, we consider

hree different measures: (a) similarity with previous refactorings

pplied to similar contexts in other software projects, (b) number of

hanges applied in the past to the same code elements to modify, and

c) a score that characterizes the co-change of elements that will be

efactored.

.2.1. Similarity with recorded refactorings applied to similar contexts

The overall idea is to maximize/encourage the use of new refactor-

ngs that are similar to those applied to different software projects in

imilar contexts. To calculate the cross-project refactoring similarity

core between a candidate refactoring operation and a set of collected

efactorings, we use the following function:

imRef actoringHistory (RO)=
n∑

i=1

wROi
∗ ContextSimilarity(RO, ROi)

(1)

here:

- n is the number of recorded refactoring operations collected from

different software systems;

- wi is a refactoring weight that reflects the similarity between the

suggested refactoring operation RO and the recorded refactoring

operation ROi. Table 1 describes the used weigh values. The weight

wi is computed as follows: if the two refactoring operations be-

ing compared have exactly the same type (e.g., “Move Method”

and “Move Method”), the weight wi = 2. If the refactoring opera-

tions being compared are similar, the weight wi = 1. We consider

two refactoring operations as similar if their implementations are
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Table 1

Similarity weights between refactoring types.

Move

method

Move

field

Pull up

field

Pull up

method

Push down

field

Push down

method

Inline

class

Move

class

Extract

class

Extract

interface

Move method 2 1 0 1 0 1 0 0 1 0

Move field 1 2 0 0 1 0 0 0 1 0

Pull up field 0 1 2 1 0 0 0 0 0 1

Pull up method 1 0 1 2 0 0 0 0 0 1

Push down field 0 1 0 0 2 1 0 0 0 1

Push down method 1 0 0 0 1 2 0 0 0 1

Inline class 1 1 1 1 1 1 2 0 0 0

Move class 1 1 1 1 1 1 0 2 1 0

Extract class 1 1 0 0 0 0 0 0 2 0

Extract interface 0 0 1 1 1 1 0 0 0 2
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5 http://www.textfixer.com/resources/common-english-words.txt.
similar, or if one of them is composed by the other. For instance,

some complex refactoring operations, such as “Extract Class”, can

be composed by combining other refactoring operations such as

“Move Method”, “Move Field”, “Create New Class”, etc. Otherwise,

the weight wi = 0.

To calculate the similarity score of the whole proposed refac-

toring solution with historical code changes, we calculate the

sum of the similarity value of each refactoring operation in this

solution with the base of collected refactorings. The function

ContextSimilarity(CRO, CROi
) aims at calculating the context sim-

ilarity between the refactoring operation RO applied to the code

fragment CRO and the refactoring operation ROi applied to the code

fragments CROi
. The aim of this measure is to estimate whether

two refactorings are in similar contexts. The similarity score is

calculated using (1) structure-based and (2) semantic-based met-

rics (Ouni et al., 2012), to assess the context similarity between

original code to be refactored and code from different software

projects that underwent refactorings in the past. Context similar-

ity between two refactorings RO and ROi is defined as follows:

ContextSimilarity(RO, ROi)

= α × (CBOsim(CRO,CROi
)+ Dsim(CRO,CROi

))

2
+ β

× SemanticSim(CRO, CROi
) (2)

where α + β = 1 are the coefficients for the two components

representing the structural and semantic similarities. In our ex-

periments, we give equal weight values to both coefficients

(α = β = 0.5). These two parameters can be adjusted accord-

ing to the maintainer preferences. The obtained values are then

normalized in the range [0, 1] using min–max normalization and

defined as follow:

.2.1.1. Structural similarity. This measure can be formalized using

uality metrics (Chidamber and Kemerer, 1994). In our approach,

e consider CBO (coupling between objects) that was defined by

hidamber and Kemerer (1994) and formulated later in Briand et al.’s

etrics catalogue (Briand et al., 1999). We chose CBO because of its

bility to capture the context in which a class is located with respect

o the rest of classes in the system. Moreover, CBO is one of the most

sed metrics to detect and fix code-smells (Kessentini et al., 2011;

Plasma, 0000) as well as finding refactoring opportunities (O’Keeffe

nd Cinnéide, 2006; Harman and Tratt, 2007; Ó Cinnéide et al., 2012),

redict changeability, and impact analysis. By definition, CBO counts

he number of other classes to which a given class is coupled and,

ence, denotes the dependency of one class on other classes in the

esign. Formally, CBO is defined as follow:

BO(c) = |{d ∈ C − {c}\| uses(c, d)∨ uses(d, c)}| (3)

here C is the set of all classes in the system and uses(x, y) is a

redicate that is true if there is a relationship between the two classes
and y e.g. a method call from x to y, an attribute or local variable of

ype y in x.

To measure the context similarity between a candidate refactoring

O that involves the code fragments CRO, and a recorded refactoring

Oi applied in past that involves the code fragments CROi
, we define

he function CBOsim as follow:

BOsim

(
CRO, CROi

) = ∣∣CBO
(
CRO

) − CBO
(
CROi

)∣∣ (4)

We also consider the dependency-based similarity (Dsim; Ouni

t al., 2012) when comparing the context similarity. In fact, some

efactorings involve only one class to be applied (e.g., extract method),

hereas other refactorings involve a pair of classes (e.g., move

ethod, move field, inline class). For the latter, we approximate

ontext similarity between classes starting from their mutual de-

endencies. The intuition is that classes that are strongly or slightly

onnected (i.e., having dependency links) are likely to be involved in

pecific changes such as move method or move field, etc. To compare

ontext similarity in terms of Dsim between a candidate refactoring

O that involves the code fragments CRO = {c1, c2}, and a recorded

efactoring ROi applied in the past that involves the code fragments

ROi
= {c′

1, c′
2}, we define the function Dsim as follow:

sim

(
CRO, CROi

) = ∣∣coup (c1, c2)− coup
(
c′

1, c′
2

)∣∣ (5)

here coup(x, y) returns the number of relationships between the

wo classes x and y, e.g. method calls, attribute or local variable of

ype x in y or vice versa.

.2.1.2. Semantic similarity. We consider another kind of coupling to

ssess the context similarity. This measure is based on vocabulary-

ased similarity (Soetens et al., 2013), also called conceptual coupling

Poshyvanyk and Marcus, 2006), and uses semantic information ob-

ained from source, encoded in identifiers and comments.

This kind of coupling is interesting to consider when measuring

he context similarity of a class with the rest of classes in the sys-

em. The vocabulary could be used as an indicator of the semantic

imilarity between different code elements (e.g., method, field, class,

tc.). We start from the assumption that the vocabulary of an actor

s borrowed from the domain terminology and therefore could be

sed to determine which part of the domain semantics is encoded by

n actor (e.g., class, method, package, interface, etc.). Thus, two code

lements could be semantically similar if they use similar vocabu-

aries. The vocabulary is extracted from the code element identifiers

i.e., names of methods, fields, variables, parameters, types, etc.) as

ell as comments. Tokenization is performed using the Camel Case

plitter which is one of the most used techniques in Software Mainte-

ance tools for the preprocessing of identifiers. To extract vocabulary

rom comments, a stop word list is used to cut-off and filter all com-

on English words.5 In addition, we excluded all the Java keywords

http://www.textfixer.com/resources/common-english-words.txt
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(e.g., Boolean, abstract, class, string, etc.). Furthermore, our seman-

tic similarity utilizes WordNet6 to enrich the extracted vocabulary.

WordNet is a widely used lexical database that groups nouns, verbs,

adjectives, etc. into the sets of synsets, i.e., cognitive synonyms, each

representing a distinct concept. Then all the extracted vocabulary

is stored as a vector where each dimension represents an extracted

word. Furthermore, more vocabulary can also be extracted from docu-

mentation and commits information. We then calculate the semantic

similarity between extracted vocabulary from these code elements

(e.g., classes) using information retrieval-based techniques (e.g., co-

sine similarity). Eq. (6) calculates the cosine similarity between two

classes. Each class is represented as a n dimensional vector, where

each dimension corresponds to a vocabulary term. The cosine of the

angle between two vectors is considered as an indicator of similarity.

Using cosine similarity, the semantic similarity between two classes

c1 and c2 in the same project is determined as follows:

Sim(c1, c2) = cos(
−→
c1 · −→

c2 ) =
−→
c1 · −→

c2∥∥∥−→
c1

∥∥∥ ∗
∥∥∥−→

c2

∥∥∥
=

∑n
i=1 (wi,1 ∗ wi,2)√∑n

i=1 (wi,1)
2
√∑n

i=1 (wi,2)
2

(6)

where
−→
c1 = (w1,1, . . . , wn,1)is the term vector corresponding to actor

c1 and
−→
c2 = (w1,2, . . . , wn,2) is the term vector corresponding to c2.

The weights wi,j is computed using information retrieval based tech-

nique, i.e., term frequency - inverse term frequency (TF-IDF) method.

The vocabulary is gathered and saved as vector.

To calculate the cross-project similarity in terms of semantic sim-

ilarity between a candidate refactoring RO that involves the code

fragments CRO = {c1, c2}, and a recorded refactoring ROi applied in

the past that involves the code fragments CROi
= {c′

1, c′
2} , we define

the function SemanticSim as follow:

Semantic Sim
(
CRO, CROi

) = ∣∣Sim (c1, c2)− Sim
(
c′

1, c′
2

)∣∣ (7)

where Sim(x, y) returns the cosine similarity between the two classes

x and y, as defined in Eq. (6). The less the SemanticSim value is, the

more the two refactorings are in similar contexts.

To illustrate the context similarity for both structural and seman-

tic measures, let us consider the example of our motivating scenario

described in Section 3.2. The aim is to recommend refactoring opera-

tions to our running software system JVacation using recorded refac-

torings from other projects (i.e., JHotDraw and JFreeChart). The list of

recorded refactorings includes the following refactoring operations:

R1: move_method(drawPrimaryLinePath(), XYLineAndShapeRen-

derer, XYSplineRenderer)

R2: move_method(initialize(), XYLineAndShapeRenderer, XYS-

plineRenderer)

R3: move_method(equals(), XYLineAndShapeRenderer, XYS-

plineRenderer)

R4: move_method(draw(), ArrowTip, AbstractLineDecoration)

One can recommend a candidate refactoring R:

move_method(getCustomerObject(), DBClient, CustomerModel)

to JVacation. In this settings, the context similarity between the

candidate refactoring R and our recorded refactorings R1, R2, R3 and

R4 is calculated as follows:

SimRef actoringHistory(R) =
∑4

i=1
wRi

∗ ContextSimilarity(R, Ri)

= wR1
∗ ContextSimilarity(R, R1)

+ wR2
∗ ContextSimilarity(R, R2)

+ wR3
∗ ContextSimilarity(R, R3)

+ wR ∗ ContextSimilarity(R, R4)
4

6 wordnet.princeton.edu.

e

i

t

here:

According to Table 1: WR1
= WR2

= WR3
= WR4

= 2

And according to Eq. (2):

ontextSimilarity
(
R, R1

)
ContextSimilarity

(
R, R2

) = ContextSimilarity
(
R, R3

)
ContextSimilarity(move method

(
DBClient, CustomerModel

)
,

move method (XYLineAndShapeRenderer, XYSplineRenderer))

0.5 ∗ (
CBOsim

(
CR, CR1

) + Dsim

(
CR, CR1

))
/2

+ 0.5 ∗ ∣∣SemanticSim
(
CR

) − SemanticSim
(
CR1

)∣∣
here:

BOsim

(
CR, CR1

)
= |CBO(DBClient)− CBO(XYLineAndShapeRenderer)|

+ |CBO(CustomerModel)− CBO
(
XYSplineRenderer

) |
= |38 − 30| + |7 − 10| = 11 (Eq. (4))

nd,

sim(CR, CR1
)

= |coup(DBClient, CustomerModel)

− coup(XYLineAndShapeRenderer, XYSplineRenderer)|
= |7 − 5| = 2 (Eq. (5))

According to Eq. (7):

emanticSim(CR, CR1)

= |sim(DBClient, CustomerModel)

− sim(XYLineAndShapeRenderer, XYSplineRenderer)|
= |0.39 − 0.5| = 0.11

After normalizing each of the CBOsim and Dsim values in the scale

0, 1] using min-max normalization, we obtain:

ontextSimilarity
(
R, R1

) = ContextSimilarity
(
R, R2

)
= ContextSimilarity

(
R, R3

) = 0.31

Similarly:

ontextSimilarity
(
R, R4

) = 0.36

Finally,

imRef actoringHistory(R)

= WR1
∗ ContextSimilarity

(
R, R1

)
+ WR2

∗ ContextSimilarity
(
R, R2

)
+ WR3

∗ ContextSimilarity
(
R, R3

)
+ WR4

∗ ContextSimilarity
(
R, R4

)
= 2 ∗ 0.31 + 2 ∗ 0.31 + 2 ∗ 0.31 + 2 ∗ 0.36 = 2.58

The aim behind these structural and semantic similarities is to find

atterns and regularities when applying refactoring. For instance, as

hown in the previous example, the case of move method refactoring

s often applied between semantically and structurally similar classes.

he more CBOsim, Dsim and semantic similarity values between the

air of classes being refactored are close to the ones of collected

efactorings, the more the suggested refactoring is encouraged.

.2.2. Change frequency

In a typical software system, important code fragments are those

ho change frequently during the development/maintenance pro-

ess to add new functionalities, to accommodate new changes or to

mprove its structure. Moreover, as reported in the literature (Olbrich

t al., 2010; Olbrich et al., 2009; Khomh et al., 2009), classes participat-

ng in design problems (e.g., code-smells) are significantly more likely

o be subject to changes and to be involved in fault-fixing changes
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Commit 2

C

Commit 1

A

B

F
Commit 3

D

B
A

Commit 4

B

C
A

Commit 5

F

D

C

Software version archive

Changed files

A   B   C   D   E   F   G
A 3 3  1   1   0   1  1 
B 3 3  1   1   0   1  1 
C 1   1   3   1  1   1  0
D 1   1   1   2  1   1   0
E 0   0   1  1   1   1   0
F 1   1   1  1   1   2   1
G 1   1   0  0   0   1   1   

CCM

(CCM)

Co-change matrix

Fig. 3. Co-changes matrix.
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bugs; Khomh et al., 2009). Indeed, if a class undergoes many changes

n the past and it is still smelly, so it needs to be fixed as soon as

ossible. On the other hand, not every code-smell is assumed to have

egative effects on the maintenance/evolution of a system. It has

een shown that in some cases, a large class might be the best solu-

ion (Olbrich et al., 2010). Moreover, it is reported that if a code-smell

e.g., god class) is created intentionally and remains unmodified or did

ot change frequently, the system may not experience any problems

Olbrich et al., 2010). For these reasons, code-smells related to more

requently changed classes should be prioritized during the correction

rocess.

This score represents the number of changes applied during the

ast to the same code elements to modify. If this number is high,

hen we can conclude that this is a good indication that this code

ragment is badly designed, thus represents a refactoring opportunity.

his second measure is defined as:

hangeFrequency
(
RO

) =
n∑

i=1

t (e) (8)

here t(e) is the number of times that the code element(s) e was

efactored in the past and n is the size of the list of possible refactoring

perations.

.2.3. Co-change

Recently, research has been carried out to mining software ver-

ion repositories (Gall et al., 1998; Zimmermann et al., 2005; Beyer

nd Noack, 2005; Gall et al., 1998). One of the important challenges

ddressed is to detect and interpret groups of software entities that

hange together. These co-change relationships have been used for

ifferent purposes: to identify hidden architectural dependencies

Gall et al., 1998), to point developers to possible places that need

hange (Zimmermann et al., 2005), or to use them for software clus-

ering (Beyer and Noack, 2005). Detecting historical co-changes is

ostly based on mining versioning systems such as CVS and in iden-

ifying pairs of changed entities. Entities are usually files, and the

hange is determined through observing additions or deletions of

ines of code. In the past decades, many CVS archives of open-source

nd industrial systems are freely available, e.g., via SourceForge.net.

We analyze CVS repositories to identify which classes have been

hanged together at the same time. To this end, we use only source

ode files to extract co-change; however, other non-useful files (e.g.,

ocumentation, configuration files, etc.) are filtered out. We consider

hat when a source code file has been changed then each class in

his file is changed (almost only one or two classes per file are im-

lemented in actual systems). Each commit/revision contains a lot

f information such as the file name, the commit/revision number,

he developer who performed the commit, the log message, and the

imestamp of the check-in. Co-change can be easily detected by min-

ng version archives, and is less expensive than program analysis

coupling, cohesion, etc.) (Ying et al., 2004). We depict in Fig. 3 an

xample of how to detect the co-change between classes through dif-

erent commits from version history archives to generate a co-change

atrix CCM. CCMi,j represented how many times the class i have been

hanged at the same (i.e., in the same commit)time with class j (co-

hange). In our adaptation, code changes are applied at the same time

f they are introduced in the same commit. For example, we can ob-

erve that almost when the class A change, the class B change also.

his reveals that the implementations and semantics of these two

lasses are strongly related. Therefore, moving code elements (meth-

ds/attributes) between them is likely to be semantically coherent

ince many changes have been manually performed between them in

he past by software developers.

In the next sections we give an overview of NSGA-II, and its adap-

ation for the problem of refactoring using the change history.
.3. NSGA-II overview

The basic idea of NSGA-II (Deb et al., 2002) is to make a popula-

ion of candidate solutions evolve toward the near-optimal solution

n order to solve a multi-objective optimization problem. NSGA-II is

esigned to find a set of optimal solutions, called non-dominated so-

utions, also Pareto set. A non-dominated solution is the one which

rovides a suitable compromise between all objectives without de-

rading any of them. As described in Algorithm 1, the first step in

SGA-II is to create randomly a population P0 of individuals encoded

sing a specific representation (line 1). Then, a child population Q0 is

enerated from the population of parents P0 using genetic operators

uch as crossover and mutation (line 2). Both populations are merged

nto an initial population R0 of size N (line 5).

Fast-non-dominated-sort (Deb et al., 2002) is the algorithm used

y NSGA-II to classify individual solutions into different dominance

evels. Indeed, the concept of Pareto dominance consists of comparing

ach solution x with every other solution in the population until it is

ominated by one of them. If no solution dominates it, the solution x

ill be considered non-dominated and will be selected by the NSGA-

I to be one of the set of Pareto front. If we consider a set of objectives

i , i � 1 . . . n, to maximize, a solution x dominates x′

ff ∀i, fi

(
x′) ≤ fi (x) and ∃j|fj

(
x′) < fj (x).

The whole population that contains N individuals (solutions) is

orted using the dominance principle into several fronts (line 6). So-

utions on the first Pareto-front F0 get assigned dominance level of

.Then, after taking these solutions out, fast-non-dominated-sort cal-

ulates the Pareto-front F1 of the remaining population; solutions on

his second front get assigned dominance level of 1, and so on. The

ominance level becomes the basis of selection of individual solutions

or the next generation. Fronts are added successively until the parent

opulation Pt+1 is filled with N solutions (line 8). When NSGA-II has

o cut off a front Fi and select a subset of individual solutions with

he same dominance level, it relies on the crowding distance (Deb

t al., 2002) to make the selection (line 9). This parameter is used to

romote diversity within the population. This front Fi to be split, is

orted in descending order (line 13), and the first (N-|Pt+1|) elements

f Fi are chosen (line 14). Then a new population Qt+1 is created us-

ng selection, crossover and mutation (line 15). This process will be
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Table 2

Refactoring operations and their controlling parameters.

Refactoring operation Actors Roles

Move method Class Source class, target class

Method Moved method

Move field Class Source class, target class

Field Moved field

Pull up field Class Sub classes, super class

Field Moved field

Pull up method Class Sub classes, super class

Method Moved method

Push down field Class Super class, sub classes

Field Moved field

Push down method Class Super class, sub classes

Method Method

Inline class Class Source class, target class

Extract class Class Source class, new class

Field Moved fields

Method Moved methods

Move class Package Source package, target package

Class Moved class

Extract interface Class Source classes, new interface

Field Moved fields

Method Moved methods
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repeated until reaching the last iteration according to stop criteria

(line 4).

Algorithm 1. High-level pseudo-code of NSGA-II.

1. Create an initial population P0

2. Generate an offspring population Q0

3. t=0;

4. while stopping criteria not reached do

5. Rt = Pt � Qt;

6. F = fast-non-dominated-sort (Rt);

7. Pt+1 = � and i=1;

8. while | Pt+1| +|Fi| � N do

9. Apply crowding-distance-assignment(Fi);

10. Pt+1 = Pt+1 � Fi ;

11. i = i+1;

12. end

13. Sort(Fi , � n);

14. Pt+1 = Pt+1 � Fi[1 : (N-| Pt+1 |)];

15. Qt+1 = create-new-pop(Pt+1);

16. t = t+1;

17. end

4.4. NSGA-II design

This section describes how NSGA-II (Deb, 2009) can be used for

the refactoring suggestion problem. In general, to apply NSGA-II to a

specific problem, the following elements have to be defined: repre-

sentation of the individuals (solution coding), evaluation of individu-

als using a fitness function for each objective to optimize, selection of

the individuals to transmit from one generation to another, creation

of new individuals using genetic operators (crossover and mutation)

to explore the search space, and generation of a new population.

4.4.1. Solution coding

As defined in the previous sections, a solution comprises a se-

quence of n refactoring operations applied to certain elements in the

source code under refactoring. To represent a candidate solution (in-

dividual), we use a vector-based representation. Each dimension of

the vector represents a refactoring operation where the order of appli-

cation of the refactoring operations corresponds to their positions in

the vector. The standard approach of pre- and post-conditions (Fowler

et al., 1999; Opdyke, 1992) is used to ensure that the refactoring op-

eration can be applied while preserving program behavior. For each

refactoring operation, a set of controlling parameters (e.g., actors and

roles as illustrated in Table 2) is randomly picked from the program

to be refactored. Assigning randomly a sequence of refactorings to

certain code fragments generates the initial population. An exam-

ple of a solution is given in Fig. 4 containing eight refactorings. To

apply a refactoring operation we need to specify which actors, i.e.,

code fragments, are involved/impacted by this refactoring and which

roles, they play to perform the refactoring operation. An actor can

be a package, class, field, method, parameter, statement or variable.

Table 2 depicts, for each refactoring, its involved actors and its role.

To generate an initial population, we start by defining the maxi-

mum vector length (maximum number of operations per solution).
move field (Person, Employee, salary)  

extract class(Person, Adress, streetNo, city, zipCode, getAdress(), updateAdress()) 

move method (Person, Employee, getSalary()) 

push down field (Person, Student, studentId) 

inline class (Car, Vehicle) 

move method (Person, Employee, setSalary())  

move field (Person, Employee, tax) 

extract class (Student, Course, courseName, CourseCode, addCourse(), rejectCourse() 

Fig. 4. Solution coding.

4

p

a

o

he vector length is proportional to the number of refactorings that

re considered, the size of the program being refactored, and the ini-

ial number of detected code-smells. A higher number of operations

n a solution does not necessarily mean that the results will be better.

deally, a small number of operations should be sufficient to provide

good trade-off between the fitness functions. This parameter can be

pecified by the software maintainer or derived randomly from the

izes of the program, the given refactoring list, and the initial num-

er of detected code-smells. During the creation, the solutions have

andom sizes inside the allowed range. To create the initial popula-

ion, we normally generate a set of PopSize solutions randomly in the

olution space.

.4.2. Selection

To guide the selection process, NSGA-II uses a binary tournament

election based on dominance and crowding distance (Deb et al.,

002). NSGA-II sorts the population using the dominance principle

hich classifies individual solutions into different dominance levels.

hen, to construct a new population, NSGA-II uses a comparison oper-

tor based on a calculation of the crowding distance (Deb et al., 2002)

o select potential individuals having the same dominance level.

.4.3. Genetic operators

Two genetic operators are defined: the crossover and mutation

perators. To better explore the search space, in this paper, we extend

ur previous definition of genetic operators used in Ouni et al. (2013c).

.4.3.1 Mutation. Mutation operator simply picks at random some

ositions in the vector and changes them by other refactoring oper-

tions. For each of the selected refactorings, we apply randomly one

f the following possible changes using equal probabilities:

- Refactoring type change (RTC): It consists of replacing a given

refactoring operation (the refactoring type and controlling param-

eters) by another one which is selected randomly from the initial

list of possible refactorings. Pre- and post-conditions should be

checked before applying this change.

- Controlling parameters change (CPC): It consists of replacing

randomly, for the selected refactoring, only their controlling pa-

rameters. For instance, for a “move method”, we can replace the
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1 move field (f18_2, c18, c23) 1 move field (f18_2, c18, c23)

2 move method (m4_6, c4, c89) 2 move method (m5_2, c5, c36)

3 extract class (c31, f31_1 , m31_1, m31_4) 3 extract class (c31, f31_1 , m31_1, m31_4)

4 pull up field (f8_1, c8, c14) 4 inline class (c24, c82)

5 move method (f41_2, c41, c129) 5 move method (f41_2, c41, c129)

6 move field (f12_8, c12, c52) 6 move field (f12_8, c12, c13)

Before mutation After mutation

Mutation

Intitial 
refactoring 

solution 

Produced 
refactoring 

solution 

Fig. 5. Example of mutation operator.

1 move field (f18_2, c18, c23) 1 move field (f18_2, c18, c23)

2 move method (m4_6, c4, c89) 2 move method (m4_6, c4, c89)

3 extract class (c31, f31_1 , m31_1, m31_4) 3 extract class (c31, f31_1 , m31_1, m31_4)

4 pull up field (f8_1, c8, c14) 4 move field (f12_10, c12, c119)

5 move method (f41_2, c41, c129) 5 inline class (c24, c82)

6 move field (f12_8, c12, c52)

1 move method (m5_1, c5, c112)

1 move method (m5_1, c5, c112) 2 Inline class (c5, c31)

2 Inline class (c5, c31) 3 push down method (m231_3, c231, c19)

3 push down method (m231_3, c231, c19) 4 pull up field (f8_1, c8, c14)

4 move field (f12_10, c12, c119) 5 move method (f41_2, c41, c129)

5 inline class (c24, c82) 6 move field (f12_8, c12, c52)

Parent 1

Before crossover After crossover

Second solution 
produced

Child 2

First solution 
produced

Child 1

Crossover

(i = 3)

Parent 2

Fig. 6. Example of crossover operator.
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source and/or target classes by other classes that can be selected

from the whole system.

A mutation example is shown in Fig. 5. Three refactorings are ran-

omly selected from the initial vector: one refactoring type change

dimension number 4), and two controlling parameters change (di-

ensions number 2 and 6).

.4.3.2 Crossover. For crossover, we use a single, random, cut-point

rossover. It starts by selecting and splitting at random two parent

olutions. Then crossover creates two child solutions by putting, for

he first child, the first part of the first parent with the second part

f the second parent, and, for the second child, the first part of the

econd parent with the second part of the first parent. This opera-

or must ensure that the length limits are respected by eliminating

andomly some refactoring operations. As illustrated in Fig. 5, each

hild combines some of the refactoring operations of the first parent

ith some ones of the second parent. In any given generation, each

olution will be the parent in at most one crossover operation. An

xample of crossover is given by Fig. 6.

.4.4. Fitness functions

After creating a solution, it should be evaluated using fitness func-

ion to ensure its ability to solve the problem under consideration. The

olution proposed in this paper is based on studying how to preserve

he way how code elements are semantically grouped and connected

ogether when refactorings are decided automatically, and how to use

he development change history to automate refactoring suggestion.

emantic preservation is captured by different heuristics/measures
hat could be integrated into existing refactoring approaches to help

reserving semantic coherence. Since we have three objectives, we

efine three different fitness functions:

(1) Quality fitness function calculates the ratio of the number of

corrected code-smells over the initial number of code-smells

using detection rules (Ouni et al., 2013a).

(2) Semantic fitness function corresponds to the weighted sum of

semantic measures (Ouni et al., 2012): vocabulary similarity

(cosine similarity), and structural dependency (shared method

calls and shared field access) used to approximate the semantic

proximity between modified code elements. Hence, the seman-

tic fitness function of a refactoring solution corresponds to the

average of the semantic measure for each refactoring operation

in the vector.

(3) History of changes’ fitness function calculates an average of three

measures described in Section 3.2: (a) similarity with pre-

vious refactorings applied to similar contexts, (b) number of

changes applied in the past to the same code elements to mod-

ify (change frequency), and (c) a score that characterizes the

co-change of code elements (actors) that will be refactored. In

the case when the program is newly developed or if the de-

velopment history is not available, only the first measure is

considered.

. Evaluation

In this section, we describe the evaluation of our approach, in-

luding the research questions to address, the studied open-source
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Table 3

Systems statistics.

Systems Release # classes # code-

smells

KLOC # previous

code-changes

Xerces-J v2.7.0 991 87 240 7493

JFreeChart v1.0.9 521 84 170 2009

GanttProject v1.10.2 245 45 41 91

ArtofIllusion v2.8.1 459 68 87 594

JHotDraw V7.0.6 468 16 57 1006

Table 4

Analyzed versions and data collection.

Systems Release Collected refactorings # previous

Previous releases # Refactorings code-changes

Xerces-J v2.7.0 v1.4.2–v2.6.1 70 7493

JFreeChart v1.0.9 v1.0.6–v1.0.9 76 2009

GanttProject v1.10.2 v1.7–v1.10.2 91 91

ArtofIllusion v2.8.1 v1.2–v1.8.2 247 594

JHotDraw v7.0.6 v5.1–v6.1 64 1006
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7 http://xerces.apache.org/xerces-j/.
8 http://www.jfree.org/jfreechart/.
9 www.ganttproject.biz.

10 www.artofillusion.org/.
11
systems, the evaluation metrics considered in our experiments, and

the results’ analysis.

5.1. Research questions and objectives

In our study, we assess the performance of our refactoring ap-

proach by finding out whether it could generate meaningful se-

quences of refactorings that fix code-smells while preserving the

construct semantics of the original design, and reusing as much as

possible the development history applied to similar contexts. Our

study refines and extends the research questions presented in our

previous work (Ouni et al., 2013c). We conduct now a quantitative

and qualitative evaluation on five subject systems instead of two, an

additional type of code smells, and two new evaluation metrics to

better evaluate the scalability and the performance of our approach.

Consequently, we address the following research questions:

RQ1.1 (SBSE validation): How does NSGA-II perform compared to

random search? We compared our NSGA-II formulation with

random search to make sure that there is a need for an in-

telligent method to explore the search-space. The next two

sub-questions are related to the comparison between our pro-

posal and other multi and mono-objective metaheuristics that

address also the refactoring problem within the same formula-

tion. These three questions are a standard ‘baseline’ questions

asked in any attempt at an SBSE formulation.

RQ1.2 (SBSE validation): How does NSGA-II perform compared to

another multi-objective algorithm in terms of code-smells cor-

rection and refactoring suggestion meaningfulness? We com-

pare NSGA-II with another popular multi-objective algorithm,

MOGA (multi-objective genetic algorithm) (Zitzler and Thiele,

1998), using the same adaptation (solution coding, fitness func-

tions, etc.) to justify the use of NSGA-II.

RQ1.3 (SBSE validation): How does our approach using NSGA-II

performs compared to mono-objective evolutionary algorithms?

This comparison is required to ensure that the refactoring so-

lutions, found by a multi-objective search (i.e., NSGA-II and

MOGA) provide better trade-offs between quality and refac-

toring meaningfulness, than those found by a mono-objective

approach, e.g., genetic algorithm (GA) (Fonseca and Flem-

ing, 1993). Otherwise, there is reason to use multi-objective

optimization.

RQ2 (Efficiency): To what extent can the proposed approach cor-

rect code-smells in the situation where the change history is not

available? We compare the efficiency of our approach in fix-

ing code-smells in both situations where the change history is

available and where it is not available.

RQ3 (Usefulness): To what extent can the proposed approach

recommend meaningful refactorings in the situation where the

change history is not available? We compare the meaning-

fulness of the recommended refactorings in both situations

where the change history is available and where it is not

available.

RQ4 (Comparison to state-of-the-art): How does our NSGA-II ap-

proach perform comparing to existing refactoring approaches? A

comparison with existing refactoring approaches (Kessentini

et al., 2011; Ouni et al., 2012) and (Harman and Tratt, 2007) is

helpful to evaluate the efficiency of our proposed approach.

RQ5 (Insight): How our multi-objective refactoring approach can be

useful for software engineers in real-world setting? The expected

benefit from refactoring is not limited to fixing code-smells but

to improve also the user understandability, reusability, flexi-

bility, as well as the effectiveness of the refactored program.

To this end, it is important to also evaluate the benefit of our

approach from this perspective.
.2. Experimental setting

.2.1. Systems studied

We applied our approach to a benchmark composed of five

edium and large-size well-known open-source java projects:

erces-J,7 JFreeChart,8 GanttProject,9 ArtOfIllusion,10 and JHot-

raw.11 Xerces-J is a family of software packages for parsing XML.

FreeChart is a powerful and flexible Java library for generating charts.

anttProject is a cross-platform tool for project scheduling. JHotDraw

s a GUI framework for drawing editors. Finally, Art of Illusion is a 3D-

odeller, renderer and raytracer written in Java.

Table 3 provides some descriptive statistics about these five soft-

are systems. We selected these systems for our validation because

hey range from medium to large-sized open-source projects, which

ave been actively developed over the past 10 years, and their design

as not been responsible for a slowdown of their development. In

ddition, these systems are well studied in the literature, and their

ode-smells have been detected and analyzed manually (Moha et al.,

010; Kessentini et al., 2010, 2011; Ouni et al., 2013a). In these cor-

uses, the four following code smell types were considered: Blob (a

arge class that monopolizes the behavior of a system or part of it,

nd the other classes primarily encapsulate data); Data Class (a class

hat contains only data and performs no processing on these data);

paghetti Code (code with a complex and tangled control structure)

nd Functional Decomposition (when a class performs a single func-

ion, rather than being an encapsulation of data and functionality).

e chose these code-smell types in our experiments because they

re among the most common ones that are detected and corrected

n recent studies and existing corpuses (Kessentini et al., 2010, 2011;

uni et al., 2013a; Moha et al., 2010).

To collect refactorings applied in previous versions of the studied

ystems, we use Ref-Finder (Prete et al., 2010). Ref-Finder is a tool

mplemented as an Eclipse plug-in that identifies refactoring opera-

ions between two consecutive releases of a software system. Table 4

hows the analyzed versions and the number of refactoring opera-

ions collected using Ref-Finder between each subsequent couple of

nalyzed versions, after a manual validation. In our study, we consider

nly the set of refactoring types described in Table 2.
http://www.jhotdraw.org/.

http://xerces.apache.org/xerces-j/
http://www.jfree.org/jfreechart/
http://www.ganttproject.biz
http://www.artofillusion.org/
http://www.jhotdraw.org/
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.2.2. Analysis method

We designed our experiments to answer our research questions.

o answer RQ1, we conduct a qualitative and quantitative evaluation

o evaluate the efficiency of our approach.

.2.2.1. Qualitative evaluation. To evaluate the usefulness of the sug-

ested refactorings, we performed a qualitative evaluation with three

h.D. students in Software Engineering; two of whom are working at

eneral Motors as senior software engineers. The subjects have an

verage of 6.5 years programming experience in Java and familiar

ith the five studied systems. We asked the participants to manu-

lly evaluate, for each system, a sample of 10 refactoring operations

hat are selected at random from the suggested refactoring solutions.

o this end, we asked them to apply the proposed refactorings us-

ng Eclipse12 and check the semantic coherence of the modified code

ragments. When a construct semantic incoherency is found manu-

lly, participants consider the refactorings related to this change as a

ad recommendation. In this setting, participants assign a meaning-

ulness score in the range [0, 5] for each refactoring according to its

oherence with the program semantics. We consider a refactoring op-

ration as meaningful if its assigned score is greater than or equal to 3.

articipants were aware that they are going to evaluate the semantic

oherence of refactoring solutions, but do not know the particular ex-

erimental research questions (the approaches and algorithms being

ompared). To this end, we define the metric refactoring meaningful-

ess (RM) that corresponds to the number of meaningful refactoring

perations, in terms of construct semantic coherence, over the total

umber of evaluated refactorings. RM is given by Eq. (9).

M = # meaningf ul ref actorings

# evaluated ref actorings
(9)

.2.2.2. Quantitative evaluation. To answer RQ1.∗, we used mainly

wo performance indicators to compare the different algorithms

sed in our experiments. When comparing two mono-objective algo-

ithms, it is usual to compare their best solutions found so far dur-

ng the optimization process. However, this is not applicable when

omparing two multi-objective evolutionary algorithms since each

f them gives as output a set of non-dominated (Pareto equivalent)

olutions. Different metrics for measuring the performance of multi-

bjective optimization methods exist. Zitzler et al. (2003) provide a

omprehensive review of quality indicators for multi-objective opti-

ization, finding that many commonly used metrics do not reliably

eflect the performance of an optimization algorithm. One of the few

ecommended metrics is the Hypervolume and the Spread indicators.

- Hypervolume (HV): This metric calculates the proportion of the

volume covered by members of a non-dominated solution set

returned by the algorithm. A higher Hypervolume value means

better performance, as it indicates solutions closer to the optimal

Pareto Front. The most interesting features of this indicator are

its Pareto dominance compliance and its ability to capture both

convergence and diversity.

- Spread (�): It measures the distribution of solutions into a given

front. The idea behind the spread indicator is to evaluate diver-

sity among non-dominated solutions. An ideal distribution has

zero value for this metric when the solutions are uniformly dis-

tributed. An algorithm that achieves a smaller value for Spread

can get a better diverse set of non-dominated solutions. For fur-

ther details about the formulation of these indicators, please refer

to Deb (2009) and Zitzler et al. (2003).

In addition to these two multi-objective performance evaluation

easures, we used other metrics to assess the efficiency and the use-

ulness of our approach and to compare mono-objective and multi-

bjective approaches.
12 http://www.eclipse.org/.
To answer RQ2, we compare the refactoring results in terms of

ode-smells correction ratio in the situation where the change history

s available and where it is not. To this end, we define the metric code-

mells correction ratio (CCR). CCR is given by Eq. (10) and calculates

he number of corrected code-smells over the total number of code-

mells detected before applying the proposed refactoring sequence.

CR = # corrected code_smells

# code_smells bef ore applying ref actorings
∈ [0, 1] (10)

To answer RQ3, we also consider both cases where the refactoring

istory is available and where it is not available. We used mainly a

ualitative validation based on the refactoring meaningfulness (RM)

s described in Eq. (9). To this end, we perform a five-fold cross vali-

ation. Each fold consists of a set of refactorings collected from four

ystems as a base of historical refactorings and the remaining sys-

em as the test system (we consider that its development history

s not available). In other words, we execute our approach on this

ystem while calculating the cross-project refactoring similarity with

he other four projects. In this setting, the higher the RM metric is,

he more the change history from other projects in similar context is

seful.

To answer RQ4, we compared our refactoring results to those pro-

uced by three state-of-the-art approaches (Harman and Tratt, 2007;

essentini et al., 2011; Ouni et al., 2012). Harman and Tratt (2007) pro-

osed a multi-objective approach that uses two quality metrics (cou-

ling between objects, and standard deviation of methods per class)

o improve after applying the refactorings sequence. In Kessentini

t al. (2011), a single-objective genetic algorithm is used to correct

ode-smells by finding the best refactoring sequence that reduces the

umber of code-smells. Ouni et al. (2012) have proposed a new multi-

bjective refactoring to find the best compromise between quality

mprovement and semantic coherence using two heuristics related

o the vocabulary similarity and structural coupling. In all contribu-

ions, the development history is not used explicitly. We evaluate the

fficiency of our refactoring solutions in producing more coherent

hanges than those produced by Harman and Tratt (2007), Kessentini

t al. (2011), and, Ouni et al. (2013a).

Finally, to answer RQ5, we assess the benefit of the suggested

efactoring solutions on software quality. Thus, although our primary

oal in this work is to demonstrate that code-smells can be automati-

ally refactored using change history information, it is also important

o assess the refactoring impact on the design quality. The expected

enefit from refactoring is to enhance the overall software design

uality as well as fixing code-smells (Fowler et al., 1999). We use the

MOOD (quality model for object-oriented design) model (Bansiya

nd Davis, 2002) to estimate the effect of the suggested refactoring

olutions on quality attributes. We choose QMOOD, mainly because

1) it is widely used in the literature (O’Keeffe and Cinnéide, 2006;

ensen and Cheng, 2010; Seng et al., 2006) to assess the effect of

efactoring, and (2) it has the advantage that define six high level

esign quality attributes (reusability, flexibility, understandability,

unctionality, extendibility, and effectiveness) that are calculated us-

ng 11 lower level design metrics (Bansiya and Davis, 2002). In our

tudy we consider the following quality attributes:

• Reusability: The degree to which a software module or other work

product can be used in more than one computer program or soft-

ware system.
• Flexibility: The ease with which a system or component can be

modified for use in applications or environments other than those

for which it was specifically designed.
• Understandability: The properties of designs that enable it to be

easily learned and comprehended. This directly relates to the com-

plexity of design structure.

http://www.eclipse.org/
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Table 5

QMOOD quality factors (Bansiya and Davis, 2002).

Quality attribute Quality index calculation

Reusability = −0.25 ∗ DCC + 0.25 ∗ CAM + 0.5 ∗ CIS + 0.5 ∗ DSC

Flexibility = 0.25 ∗ DAM − 0.25 ∗ DCC + 0.5 ∗ MOA + 0.5 ∗ NOP

Understandability = −0.33 ∗ ANA + 0.33 ∗ DAM − 0.33 ∗ DCC + 0.33 ∗ = CAM

− 0.33 ∗ NOP + 0.33 ∗ NOM − 0.33 ∗ DSC

Effectiveness = 0.2 ∗ ANA + 0.2 ∗ DAM + 0.2 ∗ MOA + 0.2 ∗ MFA + 0.2 ∗
NOP

Table 6

QMOOD quality metrics for design properties.

Design property Metric Description

Design size DSC Design size in classes

Complexity NOM Number of methods

Coupling DCC Direct class coupling

Polymorphism NOP Number of polymorphic methods

Hierarchies NOH Number of hierarchies

Cohesion CAM Cohesion among methods in class

Abstraction ANA Average number of ancestors

Encapsulation DAM Data access metric

Composition MOA Measure of aggregation

Inheritance MFA Measure of functional abstraction

Messaging CIS Class interface size
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• Effectiveness: The degree to which a design is able to achieve the

desired functionality and behavior using OO design concepts and

techniques.

We did not assess the functionality factor because we assume that,

by definition, refactoring does not change the behavior/functionality

of systems; instead it changes the internal structure. We have also

excluded the extendibility factor because it is relatively a subjective

quality factor; and, still, using a model of merely static measures to

evaluate extendibility is inadequate. Tables 5 and 6 summarize the

QMOOD formulation of these quality attributes (Bansiya and Davis,

2002). For space reasons, we omit references for the metric defini-

tions.

The quality gain is calculated by comparing each of the quality

attributes values before and after refactoring independently to the

number of fixed code-smells. Hence, the total gain in quality G for

each of the considered QMOOD quality attributes qi before and after

refactoring can be estimated as:

Gqi
= q′

i − qi (11)

where q’ and qi represent the value of the quality attribute i respec-

tively after and before refactoring.

5.2.3. Used inferential statistical methodology

Due to the stochastic nature of the algorithms/approaches we

are studying, they can provide different results for the same prob-

lem instance from one run to another. To cater for this issue and to

make inferential statistical claims, our experimental study is per-

formed based on 31 independent simulation runs for each algo-

rithm/technique studied. The obtained results are statistically ana-

lyzed using the Wilcoxon rank sum test (Arcuri and Briand, 2011)

with a 95% confidence level (α = 5%). Wilcoxon rank sum test (Arcuri

and Briand, 2011) is applied between NSGA-II and each of the other

algorithms/techniques (Kessentini et al., 2011, Ouni et al., 2012, GA,

MOGA, and random search) in terms of CCR. Our tests show that the

obtained results are statistically significant with p-value<0.05.

In the result reported in this paper, we are considering the median

value for each approach through 31 independent runs. The Wilcoxon

rank sum test allows verifying whether the results are statistically

different or not, however it does not give an idea about the difference
agnitude. In order to quantify the latter, we compute the effect

ize by using the Cohen’s d statistic (Cohen, 1988). The effect size is

onsidered: (1) small if 0.2 � d < 0.5, (2) medium if 0.5 � d < 0.8, or

3) large if d � 0.8.
Furthermore, as for our evaluation we need to select only one

olution from the entire Pareto front, with the same manner for
ll the trial runs, we use a technique similar to the one described
n Ouni et al. (2013a). Eq. (12) is used to choose the solution that
orresponds of the best compromise between our three objective
unctions: quality, semantic coherence, and context similarity. In our
ase the ideal solution has the best quality value (equals to 1), the
est semantic coherence value (equals to 1), and the highest con-
ext similarity value (equals to 1 after normalization). Hence, we
elect the nearest solution to the ideal point in terms of Euclidian
istance.

estSol

=
n−1

M in
i=0

(√
(1 − Quality[i])2 + (1 − Semantic[i])2 + +(1 − ContextSimilarity[i])2

)

(12)

where n is the number of solutions in the Pareto front returned by

SGA-II.

.3. Experimental results

This section describes and discusses the results obtained for the

ifferent research questions of Section 5.1.

Results for RQ1 (SBSE validation): For the first research ques-

ion RQ1.1, we describe the obtained results in terms of the two used

uality indicators: Hypervolume (HV) and Spread (�). For the HV, the

igher the value is, the better is the quality of the obtained results.

ig. 7 describes our finding through 31 runs of NSGA-II, MOGA, and

andom search. According to the obtained results in Fig. 7(a), ran-

om search results are generally poor, whereas NSGA-II and MOGA

btain good results for all the five systems. Moreover, as illustrated

n Fig. 7(a), NSGA-II significantly outperforms MOGA when applied

o Xerces, GanttProject, and JHotDraw while presenting comparable

erformance for JFreeChart and ArtOfIllusion. This provides evidence

he effectiveness of NSGA-II over MOGA in finding a well-converged

nd well-diversified set of Pareto-optimal refactoring solutions. For

he �, it is also desired that a multi-objective evolutionary algorithm

aintains a good spread of solutions in the obtained set of solutions.

ig. 7(b) shows that NSGA-II has the better spread among all the other

earch-based algorithms in all systems.

To summarize, the Wilcoxon rank sum test showed that in 31 runs,

oth NSGA-II and MOGA results were significantly better than random

earch. We conclude that there is an empirical evidence that our

ulti-objective formulation surpasses the performance of random

earch thus our formulation is adequate (this answers RQ1.1).

Another element that should be considered when comparing the

esults of the three algorithms is that multi-objective evolutionary

lgorithms do not produce a single solution like GA, but a set of opti-

al solutions (non-dominated solutions). The maintainer can choose

solution from them depending on his preferences in terms of com-

romise. However, at least for our evaluation, we need to select only

ne solution. To make the comparison fair, we use Eq. (12) as de-

cribed in Section 5.2.3 to automatically select a candidate solution

rom the Pareto front.

To answer the next research question, RQ1.2, we first compared

SGA-II to another widely used multi-objective algorithm, MOGA, us-

ng the same adapted fitness functions, solution representation, and

enetic operators. Then, to answer RQ1.3 we compared NSGA-II to

widely used single-objective evolutionary algorithm, genetic algo-

ithm (GA), using a single fitness function that calculates the average

f the three measures we use (quality, construct semantics preser-

ation, and development history reuse). Fig. 8 reports the compari-

on results between NSGA-II, MOGA and GA in terms of CCR and RM
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Fig. 7. Boxplots using the quality measures (a) HV, and (b) spread applied to NSGA-II, MOGA, and random search through 31 independent runs.

m

r

t

s

s

i

m

I

o

e

N

t

m

e

a

a

o

g

fi

s

s

a

i

(

s

o

8

s

fi

s

w

s

h

C

e

m

r

d

f

p

n

a

o

t

a

t

t

edian values representing obtained over 31 independent simulation

uns of the three algorithms. The Wilcoxon test provides evidence

hat all the CCR and RM values obtained employing NSGA-II were

ignificantly better than those obtained with each of MOGA. Fig. 8

hows that both NSGA-II and MOGA provide the best results regard-

ng the CCR and RM metrics. Moreover, NSGA-II outperforms MOGA in

ost of the cases for both CCR and RM. MOGA outperforms the NSGA-

I approach only in GanttProject in terms of CCR, which is the smallest

pen source system considered in our experiments, having the low-

st number of fixed code-smells (89% of CCR for MOGA, only 87% for

SGA-II), so it appears that MOGA’s search operators make a better

ask of working with a smaller search space. In terms of refactoring

eaningfulness (RM), our experiments reported in Fig. 8b provides

vidence that NSGA-II gives better results for the five systems with

n average of 86%, whereas only 76% and 70% are obtained for MOGA

nd GA respectively. In addition, NSGA-II outperforms MOGA in terms

f both performance indicators HV and � as illustrated in Fig. 7. Re-

arding HV, NSGA-II outperforms significantly MOGA in three out of

ve systems. For the � indicator, NSGA-II outperforms MOGA in all

tudied systems.

Results for RQ2 (Efficiency): Fig. 9 presents the obtained re-

ults. We observe that the majority of suggested refactorings by our

pproach (where the change history is not available) succeeded in

mproving significantly the code quality with good correction scores

an average of 85% of detected code-smells was fixed for all the five
ystems). These results are comparable to the ones obtained by the

riginal approach where the change history is available (an average of

4% for all systems). We observe that our approach achieved slightly

uperior CCR values with respect to the original approach in two out

ve projects, and identical results in one out of five projects. For in-

tance, for GanttProject, both approaches provides identical results

ith 90% of CCR score; while for JHotDraw, our approach provides

lightly better CCR results (88%) comparing to the original approach

aving a CCR score of 81%.

As interesting observation from the results of Fig. 9 is that the

CR medians are close, the results are statistically different but the

ffect size (Cohen, 1988) which quantifies the difference is small for

ost of the systems considered in our experiments. The Wilcoxon

ank sum test allows verifying whether the results are statistically

ifferent or not. However, it does not give any idea about the dif-

erence magnitude. The statistical analysis of the obtained results

rovides evidence that the cross-project similarity did not have a sig-

ificant effect on CCR on almost all systems, especially for medium

nd large systems.

Results for RQ3 (Usefulness): Fig. 10 reports the obtained results

f the RM values for our approach (using cross-project similarity) and

he original one (when the change history is available). For this evalu-

tion measurement, our approach achieved similar results comparing

o the original one. In three systems, there were identical distribu-

ions between both approaches (i.e., on the systems ArtOfIllusion,
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Fig. 8. (a) CCR and (b) RM median values of 31 independent runs of NSGA-II, MOGA, and GA.

Fig. 9. CCR median values of 31 independent runs of our approach where the change

history is not available and the original one where the change history is available.

Fig. 10. RM values of our approach where the change history is not available comparing

to the original approach where the change history is available.

p

GanttProject, and Xerces), while only in two systems (i.e., JHotDraw

and JFreeChart) there was a significant differences found but small
effect size. a
In average, over 31 independent runs, our approach utilizing cross-

roject similarity achieved 86% of RM, while our original approach

chieved 90% of RM for all the projects.
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Table 7

CCR median values of 31 independent runs, and RM values.

Systems Approach CCR RM

Xerces-J Our approach 80% (70|87) 90%

Ouni et al. (ICSM 2012) 78% (68|87) 80%

Harman et al. (2007) N.A. 60%

Kessentini et al. (2011) 90% (78|87) 60%

JFreeChart Our approach 83% (70|84) 80%

Ouni et al. (ICSM 2012) 85% (71|84) 80%

Harman et al. (2007) N.A. 60%

Our approach 89% (75|84) 50%

GanttProject NSGA-II (our approach using

context)

87% (39|45) 90%

Ouni et al. (ICSM 2012) 89% (40|45) 80%

Harman et al. (2007) N.A. 60%

Kessentini et al. (2011) 93% (42|45) 60%

ArtofIllusion Our approach 87% (59|68) 80%

Ouni et al. (ICSM 2012) 87% (59|68) 70%

Harman et al. (2007) N.A. 50%

Kessentini et al. (2011) 90% (61|68) 50%

JHotDraw Our approach 88% (14|16) 90%

Ouni et al. (ICSM 2012) 81% (13|16) 80%

Harman et al. (2007) N.A. 50%

Kessentini et al. (2011) 81% (13|16) 50%

Average values Our approach 85% 86%

for all systems Ouni et al. (ICSM 2012) 84% 78%

Harman et al. (2007) N.A. 58%

Kessentini et al. (2011) 88% 54%
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Based on the results of Fig. 10, we noticed that RM medians are

lose, the results are statistically different but the effect size (Cohen,

988) which quantifies the difference is small for most of the systems

onsidered in our experiments.

This slight degradation might due to the nature of the studied

rojects coming from different sizes, different code-smell distribu-

ions, and different development teams. That is the same set of

ode-smell types that we are considering in our experiments (blob,

paghetti code, functional decomposition, and data classes) are de-

ected in all the studied projects but with different distributions;

onsequently such regularities cannot be easily found. Furthermore,

n general, from a software engineer stand point, there are no com-

on practices on how refactoring is applied or decided; this depends

ainly on the opinion/decision of the developer. For instance to fix

blob class, a programmer may refer to many possible alternatives

efactorings such as move method, move field or extract class, etc.

Fowler et al., 1999). Hence, lower RM score is obtained for JHotDraw,

his might be due to the fact that JHotDraw is a relatively mature and

ell-designed and implemented system after more than 10 years of

ctive development, and which have much less code-smell instances

omparing to the other projects.

To sum up, despite this slight degradation in terms of RM the

btained results with cross-project similarity are considered as good

86% for all five systems). We can conclude that, despite the non-

vailability of change history such collected data from other projects

an be a valuable knowledge for recommending software refactoring.

Results for RQ4 (Comparison to state-of-the-art): We compare

ur approach with three existing approaches: Ouni et al. (2012),

essentini et al. (2011), and Harman et al. (2007). Table 7 presents

he obtained results. We observe that our approach achieved much

etter results comparing to the three other approaches in terms of

M. Overall, of all the five studied projects, our approach provides

6% RM, while Ouni et al., Kessentini et al., and Harman et al., provide

nly 78%, 58% and 54% respectively. For instance, for Xerces-J, 90% (9

ut of 10) of the evaluated refactoring operations by our participants

o not generate construct semantic incoherencies, while the other

pproaches achieved respectively 80%, 60% and 60% of RM.
Using historical software changes, our approach succeeded in

roposing more meaningful refactorings and reducing the number

f construct semantic incoherencies when applying refactoring. At

he same time, after applying the proposed refactoring operations,

e found that most of the detected code-smells are fixed with an

verage of 85% of CCR. The corrected code-smells were from differ-

nt types (blob, spaghetti code, functional decomposition, and data

lasses (Ouni et al., 2013a)). The majority of non-fixed code-smells

re related to the blob type. This type of code-smell usually requires

large number of refactoring operations and is then very difficult to

orrect. This obtained correction score is comparable to the one of

ther existing approaches that do not use development history (89%).

hus, the slight loss in the CCR is largely compensated by the signif-

cant improvement of the construct semantic coherence. In addition,

his slight loss in terms of CCR can be justified by the nature of the

roblem under consideration; there is a kind of trade-off between

CR and RM: when RM increase, then CCR decrease. This provides ev-

dence that the quality of the refactoring solutions (number of fixed

ode-smells) is inherently in conflict with construct semantic. For this

eason, we used a multi-objective optimization approach instead of a

ingle objective one.

In conclusion, our approach provides good refactoring suggestions

rom both perspectives: CCR and construct semantics coherence using

he development change history.

To sum up, the development history collected from different soft-

are projects represents a valuable knowledge that can be very useful

n improving automated software refactoring. This provides evidence

hat, in the context of refactoring, efficient and effective reuse is ex-

remely important to the success of refactoring strategies. This aligns

ell with software reuse principles as a common practice for software

evelopers to save time and efforts.

Results for RQ5 (Insights): To answer RQ5, we show in Fig. 11 the

btained quality gain values (in terms of absolute value) that we cal-

ulated for each QMOOD quality attribute before and after refactoring

or each studied system. We found that the systems quality increase

cross the four QMOOD quality factors. Understandability is the qual-

ty factor that has the highest gain value; whereas the effectiveness

uality factor has the lowest one. This mainly due to many reasons

1) the majority of fixed code-smells (blob, spaghetti code) are known

o increase the coupling (DCC) within classes which heavily affect

he quality index calculation of the effectiveness factor; (2) the vast

ajority of suggested refactoring types were move method, move

eld, and extract class (Fig. 11) that are known to have a high im-

act on coupling (DCC), cohesion (CAM) and the design size in classes

DSC) that serves to calculate the understandability quality factor.

urthermore, we noticed that JHotDraw produced the lowest quality

ncrease for the four quality factors. This is justified by the fact that

HotDraw is known to be of good design and implementation prac-

ices (Kessentini et al., 2010) and contains few number of code-smells

omparing to the four other studied systems.

To sum up, we can conclude that our approach succeeded in im-

roving the code quality not only by fixing the majority of detected

ode-smells but also by improving the user understandability, the

eusability, the flexibility, as well as the effectiveness of the refac-

ored program.

. Discussions

We noticed that our approach outperforms the other approaches

hat do not use development history for fixing code-smells and con-

truct semantic coherence. Moreover, we had promising refactor-

ng results even when the development history is not available and

nly similar collected refactorings applied to similar contexts is used.

e also found that our NSGA-II based approach performs much bet-

er than two other popular multi and mono-objective evolutionary
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Fig. 11. The impact of best refactoring solutions on QMOOD quality attributes.
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Fig. 12. Impact of the number of refactorings on multiple simulation runs on Xerces-J.
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algorithms: MOGA, and GA in terms of Hypervolume, Spread, CCR,

and RM. We also studied the results of multiple executions with the

execution time to evaluate the performance and the stability of our

approach. Over 31 independent simulation runs on Xerces-J, the av-

erage value of RM, CCR, development history reuse and execution

time for finding the optimal refactoring solution with a number of

iterations (stopping criteria) fixed to 8000 was respectively 90%, 82%,

73% and 47min85s as shown in Fig. 12. The standard deviation values

were lower than 2, except for development history reuse (2.36). This

indicates that our approach is reasonably scalable from the perfor-

mance standpoint. Moreover, we evaluate the impact of the number

of suggested refactorings on the RM, development history reuse, and

CCR scores in 31 different executions. The best RMand CCR scores are

also obtained with a higher number of suggested refactorings. Thus,

we could conclude that our approach is scalable from the perfor-

mance standpoint, especially that quality improvement is not related

in general to real-time applications where time-constraints are very

important. In addition, the results’ accuracy is not affected by the

number of suggested refactorings.

Another important consideration is the refactoring operations’ dis-

tribution. We contrast that most of the suggested refactorings are re-

lated to move method, move field, and extract class for almost all the

studied systems. For instance, in GanttProject, we had different distri-

bution of different refactoring types as illustrated in Fig. 13. We notice

that the most suggested refactorings are related to moving code ele-

ments (fields, methods) and extract/inline class. This is mainly due to

the specific code-smells types detected in GanttProject. Most of the

code-smells are related to the blob, data classes, and spaghetti code

that need particular refactorings. For instance, to fix a blob code-smell,
he idea is to move elements from the blob class to other classes (e.g.,

ata classes) in order to reduce the number of functionalities from

he blob and add behavior to other classes (mainly data classes) or

o improve some quality metrics such as coupling and cohesion (re-

ated to spaghetti code). As such, refactorings like move field, move

ethod, and extract class are likely to be more useful to fix the blob,

nd data class code-smells.

. Threats to validity

Some threats need to be considered when interpreting our study

esults.

The first threat concerns the conclusion validity. We used the

ilcoxon rank sum test with a 95% confidence level to test if sig-

ificant differences existed between the measurements for different

reatments. This test makes no assumption that the data is normally

istributed and is suitable for ordinal data, so we can be confident

hat the statistical relationships we observed are significant. For the

nternal validity, the used a technique for detecting code-smells may

ead to a few number of false positives; this may have an impact on

he results of our experiments.

External validity refers to the generalizability of our findings. In

his study, we performed our experiments on several different widely

sed open-source systems belonging to different domains and with

ifferent sizes. However, we cannot assert that our results can be

eneralized to industrial Java applications, other programming lan-

uages, and to other practitioners. Another threat can be the limited

umber of subjects and studied systems, which externally threatens

he generalizability of our results. Future replications of this study are

ecessary to confirm our findings.

Construct validity is concerned with the relationship between the-

ry and what is observed. The manual evaluation of suggested refac-

orings depends on the expertise of the subjects involved in our exper-

ments. Another threat concerns the data about the collected refactor-

ngs of the studied systems where we use Ref-Finder, which is known

o be efficient. Indeed, Ref-Finder was able to detect refactoring oper-

tions with an average recall of 95% and an average precision of 79%.

Prete et al., 2010).To ensure the precision, we manually inspect and

lter the set of refactorings found by Ref-Finder.

. Conclusions and future work

In this paper, we presented a novel search-based approach to im-

rove the automation of refactoring. We used software-development

istory, combined with structural and semantic information, to
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(a) Xerces-J                                               (b) JFreeChart

(c) GanttProject                                (d) ArtOfIllusion

(e) JHotDraw
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Fig. 13. Suggested refactorings distribution.
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mprove the precision and efficiency of new refactoring suggestions.

e start by generating some solutions that represent a combination

f refactoring operations to apply. A fitness function combines three

bjectives: maximizing design quality, construct semantic preser-

ation and the re-use of the history of changes applied to similar

ontexts.

To find the best trade-off between these objectives, NSGA-II al-

orithm is used. We found promising refactoring results, on a set of

open source systems, even when the development history is not

vailable, and only similarity collected refactorings applied to similar

ontexts is used. Moreover, to evaluate the feasibility and efficiency

f our approach, we applied three state-of-the-art multi and mono-

bjective metaheuristics (MOGA, Random Search, and GA) for the

efactoring problem using the same adaptation (solution coding, ge-

etic operators, fitness functions). We found that our NSGA-II based

pproach has been the one computing the best results regarding to

wo performance indicators (Hypervolume and Spread) over a bench-

ark composed of five open-source software systems. Moreover, our

pproach outperforms significantly three state-of-the-art refactoring

pproaches (Kessentini et al., 2011; Harman and Tratt, 2007; Ouni

t al., 2012) in terms of code-smells correction ratio, and construct

emantic coherence.

As part of our future work, we will extend our validation to in-

lude additional systems and code-smell types to fix and compare

ur NSGA-II approach with other existing refactoring approaches

O’Keeffe and Cinnéide, 2006; Seng et al., 2006). An interesting future

irection to our work would be the investigation of a new strategy

here both good and bad changes recorded in the past will be con-

idered. The aim is to maximize the dissimilarity with bad changes

pplied in the past and maximize the similarity with good ones.
urthermore, another research direction worth to explore is to in-

estigate the effect of code-smells correction on the number of faults

n the system. Indeed, recent empirical studies (Hall et al., 2014;

’Ambros et al., 2010) have found that code-smells do correlate with

oftware defects, and an increase in the number of code-smells is

ikely to generate bugs (D’Ambros et al., 2010). Other studies have

ound that some code-smells do indicate fault-prone code in some

ircumstances but the effect that these smells have on faults is small

Hall et al., 2014). While based on some empirical studies fixing code-

mells is likely to reduce implicitly faults, it will be interesting to

nvestigate, as future work, whether fixing code-smells through refac-

oring can reduce the number of faults.
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