

Empirical Evaluation of the
Program Slicing for Fault
Localization

Background of Research

e Software Systems are becoming large and
complex
— Debugging, testing, and maintaining costs are
Increasing
 To reduce development costs, techniques for
Improving efficiency of such activities are
essential

| ocalization

 Handling large source programs is difficult

 If we could select specific portions in the
source programs and we can concentrate our
attentions only to those portions, the
performance of the activities would increase

—)

Program Slicing

* A technique of extracting all program
statements affecting the value of a variable

e Specify a variable concerned and extract the
affecting statements

* Developers can concentrate their attentions
to the extracted statements

(e : N
Slicing: Extraction

Slice: Collection of extracted statements
\ J

Static Slicing

» All statements possibly affecting the value of
Slice Criterion (a variable concerned)

e Method

(1) Construct Program Dependence Graph (PDG)
Nodes: statements in program
Edges:

« Data Dependence (DD): variable definition and its
reference

» Control Dependence (CD): predicate and statement
dominated by the predicate

(2) Collect all reachable nodes on PDG to a slice
criterion (statement, variable)

Example of PDG

1 begin \\\\ (2D
s2 1=3; —

a:=o,
s3 b:=3;
s4 readIn(c);
s5 1T ¢c=0 then
s6 begin
s7 d:=functionA(a);
s8 e:=d
s9 end;
s10 else
sll Dbegin
sl12 d:=functionB(b);
sl13 e:=d
sl4 end;
s1l5 writeln(e)

\iiéend- 1///

Example of Static Slice

/(1begin \

s3 b:=3;
s4 readIn(c);
sS5 1T c=0 then

sl0 else d d

sll begin

s12 d:=functionB(b)]

sl13 e:=d - e a0}
sl4 end; Slicing criterion (s13, d) (G15) > ch

\Si?end- l///

Example of Static Slice (2)

ﬁ
S2

s3
s4
s5
S6
s/
s8
s9
s10
sll
sl2
s13
sl14
sl15

\Si?end-

begin ‘\\\
a-=3;

b:=3;
readIn(c);
1T c=0 then
begin
d:=functionA(a)]
e:=d
end;
else
begin
d:=functionB(b)]
e:=d
end;

writeln(e) .

=5

T

Ing criterion (s15, e)

sl CD

Debug Supporting Tool

e Target language: subset of Pascal

— conditional, assignment, iterative, input/output,
procedure-call, compound statement etc.

— variables : integer, string, boolean, and arrays of
them.
» Functions:
— Calculate static slice.

— Step execution, referring the values of variables,
setting the breakpoints, etc

Snapshot of Osaka Slicing System

File fraluze P.Eval Ermcuts Freserve

[T T e o T N TR

[Count Humber OFf Container)
procedure MolfContaine(min, ma @ integer) |
var @, b integers

in
hmContainer1=0;
itemin;
while l¢=mas) and (DutVvf lag[i]=1) da
bagin
Ji=i#li
Thljh DutContainertio[j]=0utContainerta[i] do ji=j+1;
HumContainer i=tumContainers: |
e
ends

[Ortput DelilverylrderTable)
procedure DeliiverylrderTable(pinteger);
var . L b integers

while DutVflag[il=l do
bagin
FHJFI:mta:r-'{J e
writelrn -:.'{{{{I:H.I'I'H,I'I'{{{{{{{{ g

@ H:.r- Hhum . D:l'ltilln!" b
thalp], ’ ?Cuztomer[p],
writeln|'Container Quantify Mark');
lag[1]=1)and(1<=j+3) do

ard

Jamj10
o i
wreiteln

erdd; | DeliiveryOrderTable } i
Page Up | Page Down | Top | Bottow |GotoLine|

2 Z345
Cortairer Huantify Mark
10013 10 1]
0015 in 1]
10016 10 (]

Dot fons Hisc
statue
load file Errord,pas
shart analuyze progres
HIHMBER OF STATEMEMTS 321
analyze finished
data file testT
interpret start
interpret coaplete
calculating slice
SLICE i
STATEMENTS 321
=
dis
Cortainer HQuantify Mark
10000 10 0
02 10 0
10003 10 0
10004 10 0
10005 10 0
106 10 0
10007 10 1
100 10 0
10010 10 0
w012 10 0
SO OUTPUT €€ €444 4%
DaliiverulrderTable
Ho. Hame Him H.E.Emtulrer'

Rl I] o

Objective

 We aim to empirically evaluate the potential
usefulness of the program slicing to the fault
localization.

Process of Experiment

e Stepl: To conduct the experiments efficiently,
we construct software debugging support tool
based on the static slicing.

o Step2: We conduct two experimental projects
to evaluate the usefulness of the slicing for
fault localization.

— Experiment 1: (with debugging support tool)
— EXxperiment 2:

Experiment 1
Objective

 We empirically evaluate the following two
hypotheses:

— (H1)Using slicing technigque reduces the fault
localizing effort.

— (H2)There exists some kinds of faults that are
localized effectively.

Experiment 1

Overview
Groupl Group2
(Three subjects) (Three subjects)
PG1/Conventional

PG1/Slicing-based

Triall fault localization

debugger-based
fault localization

PG2/Conventiona
Trial2| debugger-based
fault localization

PG2/ Slicing-based
fault localization

Experiment 1
Programs

W used two programs (PG1 and PG2) which
were developed based on the same

specification for the inventory control program
at wine shop.

* Since they were developed independently,
their data structures and the algorithms were
not identical.

Experiment 1
Type of Faults

Faults in PG1

Lack of the output
processing,

lllegal assignment,

lllegal conditional statement,
Omission of the initialization,
Lack of the procedure call,
Wrong data renovation,

Wrong parameter for the
procedure call, and

Wrong execution order for
some procedure calls.

Faults in PG2

lllegal conditional statement,
lllegal conditional statement,
Wrong reference to array variable,

Wrong execution order for some
procedure calls,

Wrong parameter for the
procedure call,

Lack of the procedure call,
Wrong data renovation,

lllegal output,

Wrong registration for database.

Experiment 1
- Analysis for (H1) -

Groupl Group2
. 122 (min.) 155 (min.)
Triall (slice) (no slice)
. 133 (min.) 114 (min.)
a2l o dice) (slice)

The group that used the slicing technique could
localize the faults effectively.

Experiment 1
- Analysis for (H2) -

Averagetimeto

Type of fault localize
Illegal conditional Groupl: 14 (min.)
statement Group2: 33 (min.)
: Lack of Groupl: 19 (min.)
Trial procedure call Group2: 34 (min.)
Wrong data Groupl: 12 (min.)
renovation Group2: 19 (min.)
Illegal conditional Group2: 19 (min.)
_ statement Groupl: 34 (min.)
Tria2 — .
Wrong registration Group2: 12 (min.)
for database Groupl: 19 (min.)

Thisdifferenceis
confirmed by the the
Welch test (a=0.05)

Slicing is effective to localize these faults.

Experiment 2
- Objective -

* In Experiment 1, we could not collect enough
subjects to statistically confirm all hypotheses
because of its expensiveness.

e To resolve this limitation, we have also
carried out an inexpensive experiment, called
Experiment 2, which aimed to examine
usefulness of the slicing to the fault
localization for small scale programs with
more subjects and less management effort.

Experiment 2

Overview
Groupl Group2
(15 subjects) (19 subjects)

Target

Six programs (P1-P6)
Slicing-based
fault localization

Six programs(P1’-P6’)

/Conventional
debugger-based
fault localization

P1-P6: programs with dicing information

P1’-P6’: only programs

Experiment 2
Programs

e Six kinds of Pascal programs each of which
Includes one fault (illegal conditional or illegal
assignment statement)

— (P1)Factorization,

— (P2)Decision whether the input number Is a prime
number,

— (P3)Construction of a Triangle of Pascal,
— (P4)Numerical operations,

— (P5)Permutation ,

— (P6)Sorting.

Experiment 2
- Analysis for (H1) -

Groupl Group2
Average 40.73 (min.) 49.11(min.)
time (dice) (no slice)

This difference is confirmed by the the Welch test (a=0.05)

The group that used the slicing technique could
localize the faults effectively.

Experiment 2
- Analysis for (H2) -

Averagetimeto

Type of fault localize

Illegal conditional Groupl: 7.13 (min.)
statement in P3 Group2: 11.63min.)

Illegal conditional Groupl: 3.07 (min.)
statement in P6 Group2: 4.53 (min.)

These faults are included in such programsthat it is
very difficult to grasp the correspondence its
algorithm to its code.

Findings

 We have empirically evaluated the potential
usefulness of the program slicing to the fault
localization.

 Number of subjects are small. However, we
would say that the program slicing is useful
for the fault localization.

Lightweight Semi-Dynamic
Slicing Methods

Dynamic Slicing

All statements actually affecting the value of a
slice criterion for an execution with a particular

Input data
Useful for debugging with testcase
Method

(1) Execute program with an input data and record the
execution trace

(2) Determine DD and CD on each statement of the
trace

(3) Collect reachable statements to a slice criterion
(input-data, execution-point, variable)

Example of Dynamic Slicing

sl begin \\\ ///1 begln \\\

s2 a-=3; e2

s3 b:=3; e3 b-—3,

s4 readIn(c); ed readIn(c);
s5 iIT c=0 then eb 1T c=0 then
s6 begin e6 begin

s7 d:=FfunctionA(a); e’ d:=functionA(a);
s8 e:=d e8 e:=d

s9 end; e9 end;

sl0 else

sll Dbegin

s12 d:=FunctionB(b);

sl13 e:=d

sl4 end;

s1l5 writeln(e) el5 writeln(e)

s16end. /// \\316end- ///

Source (1) Execute Trace with Input c=0

Example of Dynamic Slicing (cont.)

el begin
e’ a-=3;
e3 b:=3;

ed readIn(c);
c{e5 if c=0 then

e6 begin

e’ d:=functionA(a);
d{ e e:=d

e9 end;

Slicing Criterion (c=0, s15, e)

v

el5 writeln(e)
el6end.

(2) Determine DD and CD

.

P

—> DD

— CD

S

~

/

(3) Collect Statements

Static and Dynamic Slicing

e Analysis cost: < dynamic

— Recording execution trace is exhaustive

— Determining DD & CD on execution trace is
expensive

PDG << Execution Trace

* Slice size: static >

— Static slicing considers all possible flows
— Dynamic slicing only considers one trace

Unifying Static and Dynamic Information

Static information
+

Lightweight dynamic information

g

Efficient and effective slicing

Approach to Call-Mark(CM) Slicing

o (static slice— unexecuted program
statements)

 Unexecuted statements are explored by
— Checking activation of procedure/function calls

— Delete unexecuted call statements and associated
statements

— The associated statements: execution
dependency (statically determined)

Execution Dependency and CED

* S, Is executionally dependent (ED) on s, iff /S2
S, cannot be executed when s, Is not
executed 5

— Easily obtained by flow analysis

« CED(s) is a set of caller statements on which

S Is executionally depending functionX

— If any of CED(s) is known to be unexecuted,- - -
then we know that s is never executed functionyY

— Also by flow analysis

Example of CED

sl
s2
s3
s4
S5

functionA ;
iIT a=1 then
begin
b:= c;
functionB ;
ED
(part of)

CED(s2) = {s1}

CED(s4) = {sl, s5}

Steps for Call-Mark Slicing

(1) Construct PDG and compute CED for each statement
(pre-execution analysis)

(2) Prepare a flag for each call statement, and execute
program with input data. Mark the flag if the call
statement is executed

(3) Delete unexecuted nodes and associated edges from
PDG

if any flag in CED(s) is not marked, s is know to be unexecuted

(4) Collect reachable statements to a slice criterion

sl begin _

s2 a:=3; CEDS) =1

s3 b:i=3; CED(s7) = {s7}
s4 readIn(c); b1 CED(s8) = {s7}
s5 1T c=0 then CED(s12) = {s12}
s6 begin ' CED(s13) ={s12}
s7 d:=functionA(a) CED(s15) = {}
s8 e:=d

s9 end; -

s10 else i d

sll begin

sl2 d:=functionB(b]

s13 e:=d s
s14 end; @000 N E ii
s15 writeln(e) -

sloend.

sl begin

S2 a-=3;

s3 b:=3;

s4 readIn(c);

s5 1T c=0 then

s6 begin

s7 d:=functionA(a);
s8 e:=d

s9 end;

s1l0 else

sll begin

s12 d:=functionB(b);
sl13 e:=d

sl4 end;

sl15 writeln(e)

sloend.

Execution with input c=0

Flag(s7)

Fag(sl2)

Flag(s7) : marked
Flag(s12) : not marked

Example of Call-Mark Slice(Step3 & 4)

CED(s2) = {}

CED(S?) {s7}

C)\ CED(s8) = {s7}

ED(s12) = {s12}

G D(s13) = {s12}
- | CED(s15) ={}

S—— D
———— D)

s15 » ED
N o /

Slice criterion (c=0, s15, e)

Implementation of Call-Mark Slicing

Implement steps (1) - (4)
— flag <--> each call statement

Flags are not necessary to be associated with
caller codes

Modify calling mechanism and do not modify
other codes
— Steal the return addresses from the calling stack

— Determine which caller statements are actually
executed

Architecture of Osaka Slicing System

Dypaml C
Depefi éhce

o
Call Mark
F'lags

Executor

Debuggerk
' Dynlamlc
Programmer / Slicer
% & Abstrac’;ted @
Sdurce ROl
Pr@@‘ram . Call—-Mark
=t 4 Slicer
Interactive
Viewer/Editor ‘ A.Statj_c
Slicer
Static [FEid]
Dependence
Analvyzer 2 4
Brodgram
Depandence
| Graph/i.,
}1;%;_:': CORD e

Osaka Slicing System

Approach to Dependence-Cache Slicing

« Limitation of static analyses for arrays and
pointer variables

a[0]:=0;
a[1]:=3;
readin(b);

abl:=2;
c.=q[0] +P
writeln(c);

Overview of Dependence-Cache Slicing

Control dependences are analyzed statically

Data dependences are collected dynamically
at program execution

— Use dependence cache for each variables
PDG Is constructed when program halts
PDGp Is traversed from a slice criterion

Dependence Analysis

Change of Caches

Input: b=0
1. a0]:=0; 1
2. a1]:=3; 1 |2 |-
bg readin(b); 1 |2 |3
a0~ 4. ab].=2,; 4 |12 |3 |-
gij c:=a[0]+4; R L S
g~ writeln(c); 4 |2 |8 I3

Evaluation (1)

« Experiments with several sample programs

Size of Various Slices (lines of code)

Program

Static Call-Mark|D-Cache

P1(85lines)
P2(387lines)
P3(871lines)

Dynamic

S
S
38

Evaluation (2)

Pre-Execution Analysis Time
(ms by Celeron 450MHz with 128MB)

Program | Static Call-Mark [D-Cache

P1 11 14
P2 213 215
P3 710 698

5
19
43

Dynamic

N/A
N/A
N/A

Evaluation (3)

Execution Time

Program Static | Call-Mark
P1 47 47
P2 43 43
P3 4,700 4,731

(ms by Celeron 450MHz with 128MB)

D-Cache
51
45
4,834

Dynamic

174
4,540
216,464

Evaluation (4)

Program Static | Call-Mark
P1 0.4 0.6
P2 1.9 1.8
P3 3.0 3.0

Slice Construction Time
(ms by Celeron 450MHz with 128MB)

D-Cache
0.3
0.7
1.2

Dynamic

76.0
101.0
24,969.3

Discussions

e Analysis cost:

static < call-mark < d-cache << dynamic
Slice size:

static > call-mark > d-cache > dynamic

e Reasonable slice results with reasonable
analysis time

 Promising approach to get effective program
localization

Related Works

* Optimized Approaches for Dynamic
Slicing(Agrawal & Horgan)

— Still large execution overhead

 Hybrid Slicing(Guputa & Soffa)

— Collect all traces between break points and proc.
calls

— Need to specify break points/ Trace can be huge

e Parametric Slicing(Field & Ramalingam)

— Generalize static and dynamic slicing by symbolic
execution with input data subset

— Practicability and usefulness are unknown

On-Going Works

 Compiler-based lightweight semi-dynamic
slicing environment

e Java program analysis
— Bytecode analyses

— Alias analysis for Java programs
— GUI for alias information

O 00

~NOoO O bhWNPRE

prod :-=1 ;

sum =0 ;

X =1 ;

while x=<10 do begin
prod:= prod*x ;
sum = sum + X ;

X:= X +1 ;
end;
mean = sum/10 ;

writeln(prod,sum,mean);

O~NO O HA WNPE

= O

11
12

13

get(low,high,step,A)
min:=A[low];
max:=A[low];
sum:=A[low];
1:=low+step;
While 1=< high do

1T max<A[1] then

min:=A[1] ;
end 1f
1T min>A[1] then
min:=A[1];
end 1If

sum:=sum+A[1];

1:=1+step ;
end loop;
put(min,max,sum);

	プログラムスライス
	Empirical Evaluation of the Program Slicing for Fault Localization
	Background of Research
	Localization
	Program Slicing
	Static Slicing
	Debug Supporting Tool
	Objective
	Process of Experiment
	Experiment 1Objective
	Experiment 1Overview
	Experiment 1 Programs
	Experiment 1Type of Faults
	Experiment 1- Analysis for (H1) -
	Experiment 1- Analysis for (H2) -
	Experiment 2- Objective -
	Experiment 2Overview
	Experiment 2Programs
	Experiment 2- Analysis for (H1) -
	Experiment 2- Analysis for (H2) -
	Findings
	Lightweight Semi-Dynamic Slicing Methods
	Static and Dynamic Slicing
	Unifying Static and Dynamic Information
	Approach to Call-Mark(CM) Slicing
	Execution Dependency and CED
	Example of CED
	Steps for Call-Mark Slicing
	Example of Call-Mark Slice(Step3 & 4)
	Implementation of Call-Mark Slicing
	Architecture of Osaka Slicing System
	Approach to Dependence-Cache Slicing
	Overview of Dependence-Cache Slicing
	Dependence Analysis
	Evaluation (1)
	Evaluation (2)
	Evaluation (3)
	Discussions
	Related Works
	On-Going Works
	課題

