
プログラムスライス

井上克郎

大阪大学/
奈良先端科学技術大学院大学

Empirical Evaluation of the
Program Slicing for Fault

Localization

Background of Research

• Software Systems are becoming large and
complex
– Debugging, testing, and maintaining costs are

increasing
• To reduce development costs, techniques for

improving efficiency of such activities are
essential

Localization

• Handling large source programs is difficult
• If we could select specific portions in the

source programs and we can concentrate our
attentions only to those portions, the
performance of the activities would increase

Program Slicing

• A technique of extracting all program
statements affecting the value of a variable

• Specify a variable concerned and extract the
affecting statements

• Developers can concentrate their attentions
to the extracted statements

Slicing: Extraction
Slice: Collection of extracted statements

Static Slicing

• All statements possibly affecting the value of
Slice Criterion (a variable concerned)

• Method
(1) Construct Program Dependence Graph (PDG)

Nodes: statements in program
Edges:
• Data Dependence (DD): variable definition and its

reference
• Control Dependence (CD): predicate and statement

dominated by the predicate
(2) Collect all reachable nodes on PDG to a slice

criterion (statement, variable)

Example of PDG
s1 begin
s2 a:=3;
s3 b:=3;
s4 readln(c);
s5 if c=0 then
s6 begin
s7 d:=functionA(a);
s8 e:=d
s9 end;
s10 else
s11 begin
s12 d:=functionB(b);
s13 e:=d
s14 end;
s15 writeln(e)
s16end.

Example of Static Slice

Slicing criterion (s13, d)

s1 begin
s2 a:=3;
s3 b:=3;
s4 readln(c);
s5 if c=0 then
s6 begin
s7 d:=functionA(a);
s8 e:=d
s9 end;
s10 else
s11 begin
s12 d:=functionB(b);
s13 e:=d
s14 end;
s15 writeln(e)
s16end.

Example of Static Slice (2)

Slicing criterion (s15, e)

s1 begin
s2 a:=3;
s3 b:=3;
s4 readln(c);
s5 if c=0 then
s6 begin
s7 d:=functionA(a);
s8 e:=d
s9 end;
s10 else
s11 begin
s12 d:=functionB(b);
s13 e:=d
s14 end;
s15 writeln(e)
s16end.

Debug Supporting Tool

• Target language: subset of Pascal
– conditional, assignment, iterative, input/output,

procedure-call, compound statement etc.
– variables : integer, string, boolean, and arrays of

them.
• Functions:

– Calculate static slice.
– Step execution, referring the values of variables,

setting the breakpoints, etc

Snapshot of Osaka Slicing System

Objective

• We aim to empirically evaluate the potential
usefulness of the program slicing to the fault
localization.

Process of Experiment

• Step1: To conduct the experiments efficiently,
we construct software debugging support tool
based on the static slicing.

• Step2: We conduct two experimental projects
to evaluate the usefulness of the slicing for
fault localization.
– Experiment 1: (with debugging support tool)
– Experiment 2:

Experiment 1
Objective

• We empirically evaluate the following two
hypotheses:
– (H1)Using slicing technique reduces the fault

localizing effort.
– (H2)There exists some kinds of faults that are

localized effectively.

Experiment 1
Overview

Group1
(Three subjects)

Group2
(Three subjects)

PG1/Slicing-based
fault localization

PG1/Conventional
debugger-based
fault localization

PG2/Conventional
debugger-based
fault localization

PG2/ Slicing-based
fault localization

Trial1

Trial2

Experiment 1
Programs

• W used two programs (PG1 and PG2) which
were developed based on the same
specification for the inventory control program
at wine shop.

• Since they were developed independently,
their data structures and the algorithms were
not identical.

Experiment 1
Type of Faults

Faults in PG1
• Lack of the output

processing,
• Illegal assignment,
• Illegal conditional statement,
• Omission of the initialization,
• Lack of the procedure call,
• Wrong data renovation,
• Wrong parameter for the

procedure call, and
• Wrong execution order for

some procedure calls.

Faults in PG2
• Illegal conditional statement,
• Illegal conditional statement,
• Wrong reference to array variable,
• Wrong execution order for some

procedure calls,
• Wrong parameter for the

procedure call,
• Lack of the procedure call,
• Wrong data renovation,
• Illegal output,
• Wrong registration for database.

Experiment 1
- Analysis for (H1) -

Group1 Group2

122 (min.)
(slice)

155 (min.)
(no slice)

133 (min.)
(no slice)

114 (min.)
(slice)

Trial1

Trial2

The group that used the slicing technique could
localize the faults effectively.

Experiment 1
- Analysis for (H2) -

Illegal conditional
statement

Lack of
procedure call

Wrong data
renovation

Group1: 14 (min.)
Group2: 33 (min.)

Group1: 19 (min.)
Group2: 34 (min.)

Group1: 12 (min.)
Group2: 19 (min.)

Trial1

Type of fault Average time to
localize

Illegal conditional
statement

Wrong registration
for database

Group2: 19 (min.)
Group1: 34 (min.)

Group2: 12 (min.)
Group1: 19 (min.)

Trial2 This difference is
confirmed by the the
Welch test (α=0.05)

Slicing is effective to localize these faults.

Experiment 2
- Objective -

• In Experiment 1, we could not collect enough
subjects to statistically confirm all hypotheses
because of its expensiveness.

• To resolve this limitation, we have also
carried out an inexpensive experiment, called
Experiment 2, which aimed to examine
usefulness of the slicing to the fault
localization for small scale programs with
more subjects and less management effort.

Experiment 2
Overview

Group1
(15 subjects)

Group2
(19 subjects)

Six programs(P1’-P6’)
/Conventional

debugger-based
fault localization

Six programs (P1-P6)
Slicing-based

fault localization
Target

P1-P6: programs with slicing information
P1’-P6’: only programs

Experiment 2
Programs

• Six kinds of Pascal programs each of which
includes one fault (illegal conditional or illegal
assignment statement)
– (P1)Factorization,
– (P2)Decision whether the input number is a prime

number,
– (P3)Construction of a Triangle of Pascal,
– (P4)Numerical operations,
– (P5)Permutation ,
– (P6)Sorting.

Experiment 2
- Analysis for (H1) -

Group1 Group2

Average
time

40.73 (min.)
(slice)

49.11(min.)
(no slice)

This difference is confirmed by the the Welch test (α=0.05)

The group that used the slicing technique could
localize the faults effectively.

Experiment 2
- Analysis for (H2) -

Illegal conditional
statement in P3

Illegal conditional
statement in P6

Average time to
localize Type of fault

Group1: 7.13 (min.)
Group2: 11.63min.)

Group1: 3.07 (min.)
Group2: 4.53 (min.)

These faults are included in such programs that it is
very difficult to grasp the correspondence its
algorithm to its code.

Findings

• We have empirically evaluated the potential
usefulness of the program slicing to the fault
localization.

• Number of subjects are small. However, we
would say that the program slicing is useful
for the fault localization.

Lightweight Semi-Dynamic
Slicing Methods

Dynamic Slicing
• All statements actually affecting the value of a

slice criterion for an execution with a particular
input data

• Useful for debugging with testcase
• Method

(1) Execute program with an input data and record the
execution trace

(2) Determine DD and CD on each statement of the
trace

(3) Collect reachable statements to a slice criterion
(input-data, execution-point, variable)

Example of Dynamic Slicing

s1 begin
s2 a:=3;
s3 b:=3;
s4 readln(c);
s5 if c=0 then
s6 begin
s7 d:=functionA(a);
s8 e:=d
s9 end;
s10 else
s11 begin
s12 d:=functionB(b);
s13 e:=d
s14 end;
s15 writeln(e)
s16end.

e1 begin
e2 a:=3;
e3 b:=3;
e4 readln(c);
e5 if c=0 then
e6 begin
e7 d:=functionA(a);
e8 e:=d
e9 end;

e15 writeln(e)
e16end.

Source (1) Execute Trace with Input c=0

Example of Dynamic Slicing (cont.)

e1 begin
e2 a:=3;
e3 b:=3;
e4 readln(c);
e5 if c=0 then
e6 begin
e7 d:=functionA(a);
e8 e:=d
e9 end;

e15 writeln(e)
e16end.

CD
DD

a
c

d

e

(2) Determine DD and CD

Slicing Criterion (c=0, s15, e)

s1 begin
s2 a:=3;
s3 b:=3;
s4 readln(c);
s5 if c=0 then
s6 begin
s7 d:=functionA(a);
s8 e:=d
s9 end;
s10 else
s11 begin
s12 d:=functionB(b);
s13 e:=d
s14 end;
s15 writeln(e)
s16end.

(3) Collect Statements

Static and Dynamic Slicing

• Analysis cost: static < dynamic
– Recording execution trace is exhaustive
– Determining DD & CD on execution trace is

expensive
PDG << Execution Trace

• Slice size: static > dynamic
– Static slicing considers all possible flows
– Dynamic slicing only considers one trace

Unifying Static and Dynamic Information

Static information
+

Lightweight dynamic information

Efficient and effective slicing

Approach to Call-Mark(CM) Slicing

• (static slice unexecuted program
statements)

• Unexecuted statements are explored by
– Checking activation of procedure/function calls
– Delete unexecuted call statements and associated

statements
– The associated statements: execution

dependency (statically determined)

Execution Dependency and CED

• s1 is executionally dependent (ED) on s2 iff
s1 cannot be executed when s2 is not
executed
– Easily obtained by flow analysis

• CED(s) is a set of caller statements on which
s is executionally depending
– If any of CED(s) is known to be unexecuted,

then we know that s is never executed
– Also by flow analysis

s2
...
...s1

functionX
...
functionY
...
...
s
...

Example of CED
s1 functionA ;
s2 if a=1 then
s3 begin
s4 b:= c;
s5 functionB ;

ED
(part of)

CED(s2) = {s1}

CED(s4) = {s1, s5}

Steps for Call-Mark Slicing
(1) Construct PDG and compute CED for each statement

(pre-execution analysis)
(2) Prepare a flag for each call statement, and execute

program with input data. Mark the flag if the call
statement is executed

(3) Delete unexecuted nodes and associated edges from
PDG

if any flag in CED(s) is not marked, s is know to be unexecuted

(4) Collect reachable statements to a slice criterion

Example of Call-Mark Slice (Step1)
s1 begin
s2 a:=3;
s3 b:=3;
s4 readln(c);
s5 if c=0 then
s6 begin
s7 d:=functionA(a);
s8 e:=d
s9 end;
s10 else
s11 begin
s12 d:=functionB(b);
s13 e:=d
s14 end;
s15 writeln(e)
s16end.

CED(s2) = {}
...
CED(s7) = {s7}
CED(s8) = {s7}
CED(s12) = {s12}
CED(s13) = {s12}
CED(s15) = {}

Example of Call-Mark Slice (Step2)
s1 begin
s2 a:=3;
s3 b:=3;
s4 readln(c);
s5 if c=0 then
s6 begin
s7 d:=functionA(a);
s8 e:=d
s9 end;
s10 else
s11 begin
s12 d:=functionB(b);
s13 e:=d
s14 end;
s15 writeln(e)
s16end.

Execution with input c=0

Flag(s7)

Flag(s12)

X

Flag(s7) : marked
Flag(s12) : not marked

Example of Call-Mark Slice(Step3 & 4)

Slice criterion (c=0, s15, e)

s1 begin
s2 a:=3;
s3 b:=3;
s4 readln(c);
s5 if c=0 then
s6 begin
s7 d:=functionA(a);
s8 e:=d
s9 end;
s10 else
s11 begin
s12 d:=functionB(b);
s13 e:=d
s14 end;
s15 writeln(e)
s16end.ED

CD
DD

CED(s2) = {}
...
CED(s7) = {s7}
CED(s8) = {s7}
CED(s12) = {s12}
CED(s13) = {s12}
CED(s15) = {}

Implementation of Call-Mark Slicing

• Implement steps (1) - (4)
– flag <--> each call statement

• Flags are not necessary to be associated with
caller codes

• Modify calling mechanism and do not modify
other codes
– Steal the return addresses from the calling stack
– Determine which caller statements are actually

executed

Architecture of Osaka Slicing System

Osaka Slicing System

Approach to Dependence-Cache Slicing

• Limitation of static analyses for arrays and
pointer variables

1: a[0]:=0;
2: a[1]:=3;
3: readln(b);
4: a[b]:=2;
5: c:=a[0]+4;
6: writeln(c);

?

?

Overview of Dependence-Cache Slicing

• Control dependences are analyzed statically
• Data dependences are collected dynamically

at program execution
– Use dependence cache for each variables

• PDGDC is constructed when program halts
• PDGDC is traversed from a slice criterion

Dependence Analysis

Change of Caches
Input: b=0

-3244:

53246:
53245:

-3213:
--212:
---11:

cba[1]a[0]
1: a[0]:=0;
2: a[1]:=3;
3: readln(b);
4: a[b]:=2;
5: c:=a[0]+4;
6: writeln(c);

2: a[1]:=3;
3: readln(b);
4: a[b]:=2;
5: c:=a[0]+4;
6: writeln(c);

1: a[0]:=0;

b

c

a[0]

Evaluation (1)

• Experiments with several sample programs

Size of Various Slices (lines of code)

Program Static Call-Mark D-Cache Dynamic
P1(85lines) 21 17 15 5
P2(387lines) 182 162 16 5
P3(871lines) 187 166 61 8

Evaluation (2)
Pre-Execution Analysis Time

(ms by Celeron 450MHz with 128MB)

Program Static Call-Mark D-Cache Dynamic
P1 11 14 5 N/A
P2 213 215 19 N/A
P3 710 698 48 N/A

Evaluation (3)
Execution Time

(ms by Celeron 450MHz with 128MB)

Program Static Call-Mark D-Cache Dynamic
P1 47 47 51 174
P2 43 43 45 4,540
P3 4,700 4,731 4,834 216,464

Evaluation (4)
Slice Construction Time

(ms by Celeron 450MHz with 128MB)

Program Static Call-Mark D-Cache Dynamic
P1 0.4 0.6 0.3 76.0
P2 1.9 1.8 0.7 101.0
P3 3.0 3.0 1.2 24,969.3

Discussions

• Analysis cost:
static ≤ call-mark < d-cache << dynamic

Slice size:
static > call-mark > d-cache > dynamic

• Reasonable slice results with reasonable
analysis time

• Promising approach to get effective program
localization

Related Works
• Optimized Approaches for Dynamic

Slicing(Agrawal & Horgan)
– Still large execution overhead

• Hybrid Slicing(Guputa & Soffa)
– Collect all traces between break points and proc.

calls
– Need to specify break points/ Trace can be huge

• Parametric Slicing(Field & Ramalingam)
– Generalize static and dynamic slicing by symbolic

execution with input data subset
– Practicability and usefulness are unknown

On-Going Works

• Compiler-based lightweight semi-dynamic
slicing environment

• Java program analysis
– Bytecode analyses
– Alias analysis for Java programs
– GUI for alias information

課題

• プログラムスライスの研究動向調査
• プログラムスライスの原点の論文の要約
• プログラムスライスの応用に関する調査　田中、
岡本

– 応用分野
– 商用システム

1: prod :=1 ;
2: sum :=0 ;
3: x :=1 ;
4: while x=<10 do begin
5: prod:= prod*x ;
6: sum := sum + x ;
7: x:= x +1 ;

end;
8: mean := sum/10 ;
9: writeln(prod,sum,mean);

1 get(low,high,step,A)
2 min:=A[low];
3 max:=A[low];
4 sum:=A[low];
5 i:=low+step;
6 While i=< high do
7 if max<A[i] then
8 min:=A[i] ;

end if
9 if min>A[i] then
10 min:=A[i];

end if
11 sum:=sum+A[i];
12 i:=i+step ;

end loop;
13 put(min,max,sum);

	プログラムスライス
	Empirical Evaluation of the Program Slicing for Fault Localization
	Background of Research
	Localization
	Program Slicing
	Static Slicing
	Debug Supporting Tool
	Objective
	Process of Experiment
	Experiment 1Objective
	Experiment 1Overview
	Experiment 1 Programs
	Experiment 1Type of Faults
	Experiment 1- Analysis for (H1) -
	Experiment 1- Analysis for (H2) -
	Experiment 2- Objective -
	Experiment 2Overview
	Experiment 2Programs
	Experiment 2- Analysis for (H1) -
	Experiment 2- Analysis for (H2) -
	Findings
	Lightweight Semi-Dynamic Slicing Methods
	Static and Dynamic Slicing
	Unifying Static and Dynamic Information
	Approach to Call-Mark(CM) Slicing
	Execution Dependency and CED
	Example of CED
	Steps for Call-Mark Slicing
	Example of Call-Mark Slice(Step3 & 4)
	Implementation of Call-Mark Slicing
	Architecture of Osaka Slicing System
	Approach to Dependence-Cache Slicing
	Overview of Dependence-Cache Slicing
	Dependence Analysis
	Evaluation (1)
	Evaluation (2)
	Evaluation (3)
	Discussions
	Related Works
	On-Going Works
	課題

