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Abstract

A functional concern – code that helps fulfill a functional requirement
– is typically implemented by collaborative software modules. When a
developer modifies or reuses the implementation of a functional concern,
he must find the modules contributing to the concern and understand
how the units collaborate with one another. In this paper, we describe an
approach for locating the code contributing to a functional concern that
is based on program slicing. Our approach uses heuristics to bound the
size of the slice determined to represent the functional concern, thereby
overcoming the large slice sizes that often limit the usefulness of pro-
gram slicing based approaches. Our approach outputs a description of
the functional concern’s implementation as a concern graph, which sum-
marizes the interactions between the program elements in the slice. We
report on an evaluation in which we compared the size and content of
concern graphs produced by our approach with concern graphs made by
hand by two developers. We show that our method can extract concern
graphs with appropriate content for a developer automatically, reducing
the cost of locating functional concerns.

1 Introduction

Many software developers spend much of their time being a kind of detective,
trying to locate, based on a few clues, where particular functionality is imple-
mented in a system’s source code. Consider, for example, a software developer,
who as part of the team developing the Firefox web browser 1 is assigned to fix

1http://www.mozilla.com/en-US/, last verified on March 14, 2007
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problem #373525, “Certificate Manager opens with wrong tab selected”. To
work on this problem, the developer must locate the source that implements
certificates and that provides the user interface to manage certificates. We refer
to the source contributing to a particular functional requirement, like certificate
management, as a functional concern. Sometimes, a functional concern of inter-
est is well-modularized and the developer can easily inspect the concern code,
understand how it works, and continue with the task. More often, the func-
tional concern code is spread across multiple collaborating modules (e.g. [20]),
which complicates the location of all of the code related to the concern and the
determination of how the code works together. Some estimate that locating and
understanding functional concerns in source code accounts for more than half
of the total cost of maintenance [7].

In this paper, we focus primarily on the problem of locating a functional
concern of interest in a code base. Several approaches have been proposed to
aid a developer with concern location. Many approaches involve a developer
inspecting the results of searches across the structure of a system to determine
which code is related to the functional concern of interest. For instance, the
approach of Shepherd and colleagues involves a developer looking at the results
of searches across a structural graph augmented with information about the
use of identifiers [27]. Other approaches are more automated. For example,
Robillard and Murphy introduced an approach to infer the location of concerns
based on a programmer’s navigation activity. While this approach automates
the creation of a description of a concern, the developer must still perform the
navigation work to investigate the concern.

We describe in this paper an approach called SCOLOC (Slicing-based COn-
cern LOCation) to further automate concern location that is based on program
slicing. To use SCOLOC, the developer provides a list of methods he believes
are related to the concern. Using control- and data-flow from a program depen-
dence graph, SCOLOC automatically produces a concern graph [22] describing
the code related to the functional concern. The produced concern graph de-
scribes the entities—the methods and fields—involved in the concern, and also
describes the relationships between those entities through which the individual
entities collaborate to provide the functional concern. To ensure our approach
is easy to apply, the only input required by the developer is a small list of seed
methods associated with the functional concern; this list can be determined us-
ing standard techniques, such as identifying methods through keyword search
[17, 27]. To ensure we produce output automatically of reasonable size, we
use barriers when slicing [15]; in contrast to previous work, we determine the
barriers automatically.

In this paper, we also report on an evaluation we conducted to determine
if the concern graphs produced by our approach automatically are appropriate
for a developer to use for a task. The evaluation compared concern graphs cre-
ated by hand by two developers to concern graphs created with the SCOLOC
approach. We found that we could automatically produce concern graphs of
reasonable size with approximately 54% and 52% recall and precision compared
to the concern graphs made by hand. This result provides evidence that our ap-
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proach produces reasonable sized concern graphs with the appropriate content.
We begin by positioning our work in relation to previous work (Section 2).

We then describe our approach (Section 3) and describe the implementation of
SCOLOC (Section 4). We provide evidence our method is effective (Section 5)
and conclude with a summary of our contributions (Section 6).

2 Related Work

The problem of concern location relates to the problem of feature location. In
this section, we describe previous efforts in each of these problem areas and
describe how our approach relates to previous work on program slicing.

2.1 Feature Location

Feature location techniques identify relationship between user functionality and
program units [31]. Feature location techniques include two approaches, static
and dynamic.

SNIAFL is a static information retrieval approach to map methods to related
features [33]. This method generates a pseudo execution trace that represents
the dynamic behavior of the methods for each feature. SNIAFL requires docu-
ments that describe features of a target program, such as a user manual. Our
approach requires only the program code since developers do not typically write
down their knowledge in design documents [18].

Closer to our approach is that of Chen and collegues who proposed a static
feature location using abstract system dependence graph (ASDG) [3]. In their
approach, a developer first creates a search graph including functions to be
investigated. The developer then interactively finds related nodes from ASDG
and adds node to the search graph. While both their technique and ours use a
system dependence graph, our technique is automated.

Walkinshaw et al. proposed a dynamic approach. They proposed a program
slicing based approach to restrict the call graph to contain only methods and
calls that may be relevant to the execution of a particular use-case or scenario
[29].

Another dynamic approach proposed by Eisenbarth et al. is a method com-
bining formal concept analysis with dynamic analysis [6]. In this approach, a
developer gives feature keywords for each execution trace. Formal concept anal-
ysis build a concept lattice for feature keywords and executed procedures. We
have favoured a static approach to reduce the need to prepare enough input
data to locate features.

2.2 Concern Location

Concern location techniques identify a concern spread across a target program.
Concerns are usually distinguished from features by focusing on the developer’s
viewpoint of the code rather than the user’s viewpoint of the program. A feature
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from a user’s viewpoint is thus mapped to several functional and non-functional
concerns.

Robillard and Murphy proposed to categorize entities investigated by a de-
veloper into concerns based on the developer’s activity [23]. Robillard also
proposed an approach based on static analysis and developers’ activity to sug-
gest software entities related to their task [24]. Both of these approaches still
require investigation by the developer to create the concern.

Shepherd et al. proposed a natural language processing approach to extract
crosscutting concerns from identifiers in the source code [27]. Developers can
find source code fragments from a pair of a verb and a direct object. While this
approach can extract scattered code related to same action, it does not help
developers understand collaboration among modules.

Aspect Mining techniques focus on locating crosscutting concerns to migrate
a legacy system to aspect-oriented programming. These techniques also uses
heuristics including fan-in values [19], a position of a method call [16], code
clone information [2] and a combination of metrics [26]. These heuristics find all
candidates of crosscutting concerns in software but they do not distinguish code
of a specific crosscutting concern from code of other crosscutting concerns. Our
SCOLOC approach can collaborate with these techniques to exclude unrelated
crosscutting concerns from a functional concern investigated by a developer.

In our previous work [12], we used heuristics based on syntactic informa-
tion, such as the return type and the number of parameters for each method,
obtained from a method signature to locate a functional concern. However, this
syntactic information depends on the coding style of a developer and can easily
change during software evolution. In this work, we introduce new heuristics, the
similarity and distance metrics. The heuristics improve precision and recall and
prevent small code changes from affecting the output of our SCOLOC approach.

2.3 Program Slicing

Our approach is based on program slicing, a technique to extract statements
that are relevant to a particular variable [30]. Given a source program p, a
program slice is a collection of statements possibly affecting the value of slicing
criterion (in the pair <s, v>, s is a statement in p, and v is a variable defined
or referred to at s).

Chopping, which is a variant of program slicing, was proposed to support
the understanding of how a statement affects another statement [10]. Chopping
extracts control-flow and data-flow paths from input variables to output vari-
ables in a program dependence graph. This approach requires a developer to
understand what might be input and output for a functional concern in terms
of data flow. To understand a functional concern, we believe it is reasonable
for a developer to identify interesting methods, but not to understand deeply
before finding the concern the role of two statements. Another limitation of
this labeling is that a developer cannot specify interesting methods or variables
in a functional concern, e.g. a variable containing an intermediate state of the
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functional concern. Therefore, it is not suitable to inspect the structure of a
concern.

To make the output of a slicing operation more amenable for a developer to
understand, the PROVIS tool in the CANTO environment allows a developer to
specify the numbers of forward and backward distance from a selected node that
the user wants to be displayed [1]. Krinke also proposed length-limited slicing
based on the distance from a criterion to extract a small program slice [14].
These approaches stop the traversal at a vertex after k steps from the criterion
vertex. However, it is hard to determine an appropriate parameter k. Krinke
also proposed chopping with barriers [15]. A barrier is a vertex that terminates
the graph traversal. In [15], only chopping criteria (source and target vertices)
are identified as barriers by default. A developer adds other barriers by hand if
necessary. Our approach aims to automatically identify such barriers in order
to extract a small set of statements for specific software entities.

SCOLOC builds on an approach introduced by Kameda to translate a pro-
gram slice into a concern graph [13]. This approach tries to provide an abstract
information of a program slice to developers. Kameda’s approach may still out-
put a large concern graph for a large program slice. We combined an automatic
barrier identification with Kameda’s translation approach to output a small
concern graph for developers to easily understand the structure of a concern.

3 The SCOLOC Approach

Our SCOLOC approach takes as input a target program and program entities
that a developer has identified as contributing to a functional concern to be
located. We apply heuristics to all methods in the target program to identify
inter-method edges as barriers [15]. A barrier blocks graph traversal during
program slicing to exclude methods that are likely not related to the initial set
of entities specified by a developer.

The output of SCOLOC is a concern graph [22]. A concern graph contains
program entities, such as methods and fields, and relationships between the en-
tities that describe how the entities collaborate to implement the concern. A
developer can use the information in a concern graph to understand the func-
tional concern. In addition, we annotate the source code with slice information
to support a developer reading a code with the concern graph.

The SCOLOC approach consists of five steps.

1. The SCOLOC tool constructs a PDG for the target program.

2. The software developer selects seed methods in the PDG that contribute
to the functional concern.

3. The SCOLOC tool evaluates a heuristic function to identify barriers.

4. The SCOLOC tool calculates a program slice given the PDG, the seed
methods and the heuristically-identified barriers.
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5. The SCOLOC tool produces a concern graph from the computed slice.

We use the example source code shown in Figure 1 to describe the de-
tails of SCOLOC. This program outputs the name and size of files specified
by arguments. We investigate a functional concern of how to calculate the
size for each file. We select two seed methods Main.main (lines 2-8) and
FileList.getFileSize (lines 37-42) and produce the concern graph shown
in Figure 3.

3.1 Heuristic Barrier Identification

To identify barriers in the PDG automatically, we developed a heuristic based
on two metrics: similarity and distance. The barriers we identify are edges
between methods.

We identify barriers using a function isBlocked(m,C) where m is a method
in the PDG and C is the set of seed methods. SCOLOC evaluates this func-
tion for each method m in the PDG; if the function returns true, all edges
connected to the method m are identified as barriers blocking graph traversal
during program slicing.

The isBlocked function is defined using the similarity and distance met-
rics. The similarity metric evaluates the degree to which a method relates
semantically to the seed methods. The distance metric evaluates how close a
method is to the seed methods in the PDG structure. Equation (1) defines the
isBlocked(m,C).

isBlocked(m,C) = Similarity(m,C) < thresholdsim

∨ Distance(m,C) > thresholddist (1)
(2)

In short, a low Similarity(m, C) value indicates that the method m is not
similar to any method included as a seed. A low Distance(m,C) value indicates
that the method m is distant from slicing criteria in the graph structure.

3.1.1 Similarity Metric

The similarity metric uses non-local names and their context referred to in a
method as a proxy for likely similarity in the functionality of the methods.

We hypothesize that two methods that refer to similar classes, methods and
fields contribute similar functionality.

To define the similarity value for two methods, we use a set to represent
the names; NS(m) is a case-insensitive token set including names referred to in
method m other than the names of local variables. The following steps are used
to construct NS(m) for the method m:

1. Initialize NS(m) = ϕ.
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1: public class Main {

2: public static void main(String[] args) {

3: FileList f = new FileList();

4: for (int i=0; i<args.length; ++i) {

5: f.add(args[i]);

6: }

7: f.printFileSize();

8: }

9: }

10: class FileList {

11: private ArrayList files;

12: public FileList() {

13: files = new ArrayList();

14: }

15: public void add(String filename) {

16: files.add(filename);

17: }

18: public String getFileName(int i) {

19: return (String)files.get(i);

20: }

21: public long getTotalFileSize() {

22: long total = 0;

23: for (int i=0; i<files.size(); ++i) {

24: total += getFileSize(getFileName(i));

25: }

26: return total;

27: }

28: public void printFileSize() {

29: for (int i=0; i<files.size(); ++i) {

30: System.out.print(getFileName(i));

31: System.out.print("\t");

32: System.out.println(

33: getFileSize(getFileName(i)));

34: }

35: System.out.println(getTotalFileSize());

36: }

37: private long getFileSize(String filename) {

38: File f = new File(filename);

39: if (f.exists() && f.isFile())

40: return f.length();

41: else return 0;

42: }

43: }

Figure 1: Example source code

7



2. Add the identifier representing m to NS(m). Also add m’s declaring class
name, return type and parameter types to NS(m).

3. For each method n called by m, add n’s name, declaring class, return type,
parameter types to NS(m).

4. For each field f accessed by m, add f ’s name, declaring class, type to
NS(m).

5. For each class c referred to in m (used in new, instanceof or type casting
expression), add c’s name to NS(m).

6. For each token t in NS(m) extracted using any of the four previous steps,
add the decomposed tokens of t to NS(m). Decomposition involves the
splitting of a long token, a compound name, into several short tokens.
For example, java.lang.StringTokenizer is decomposed to four tokens:
“java”, “lang”, “string” and “tokenizer”. We used the decomposition rules
from a component search engine [17] to handle CamelCase, UPPERCase,
under_score_name, Class$Innerclass and package.Class.

After the construction of NS(m) for each method m, we filter out common
tokens such as “java” and “object” from each constructed NS(m). A token t is
removed from NS(m) if token t appears in more than 20% of the methods in
the target program. We also exclude one letter names, such as “x” and “i”.

The similarity of two methods is given in equation (2). The similarity value is
the probability that a token t in one method is also included in the other method.
A high similarity value means the two methods share many tokens making them
more likely, in our opinion, to contribute to the same functionality. If NS(m1)
equals NS(m2), the similarity is maximum: Similarity(m,m) = 1.

Similarity(m1,m2) =
1
2
(
|NS(m1) ∩ NS(m2)|

|NS(m1)|
+

|NS(m1) ∩ NS(m2)|
|NS(m2)|

) (3)

Similarity(m,C) = max
n∈C

Similarity(m,n) (4)

Equation (3) is the similarity of method m and the seed methods. We use
the similarity values to filter out methods that do not contribute to the same
functionality as criteria methods.

Table 1 shows the similarity values of the example code. Criteria methods
main and getFileSize have maximum similarity 1.0. The similarity value of
FileList.add is high since main calls FileList.add, and FileList.add calls
ArrayList.add, respectively.
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Table 1: Similarity for example slicing
Simlilarity Method

1.000 sample.Main.main
1.000 sample.FileList.getFileSize
0.540 sample.FileList.add
0.519 sample.FileList.getTotalFileSize
0.482 sample.FileList.printFileSize
0.468 sample.FileList.init
0.404 sample.FileList.getFileName

3.1.2 Distance Metric

The similarity metric represents semantic relation. In comparison, the distance
metric represents a structural relation. This metric evaluates locality because
users are typically more interested in facts that are near the current point of
interest than those that are further away [14]. Another motivation is that a
developer typically prefers understanding how code is connected to the current
focus [1].

For example, two methods printFileSize and getFileSize of FileList
have almost the same similarity values. However, printFileSize is more im-
portant for interaction between criteria methods main and getFileSize since
printFileSize connects the criteria methods. The distance metric helps in-
clude methods that contribute to connecting slicing criteria methods to one
another.

We define the distance metric based on a method-level PDG, whose vertices
and edges represent methods and inter-method edges in PDG, respectively. A
method-level PDG is constructed from PDG using a simple set of rules:

• Create method vertices for each method m in the original PDG.

• Add a call edge m1 to m2 if a call edge from a vertex in m1 to m2 is in
the original PDG.

• Add a return edge m2 to m1 if a parameter-out edge from a vertex in m2
to m1 is in the original PDG.

• Add a field data-flow edge m1 to m2 if a field data-flow edge from a vertex
in m2 to m1 is in the original PDG.

The forward distance fd(src, dest) between two methods src and dest is the
length of the shortest realizable path by forward traversal in the method-level
PDG from src to dest. Using the fd(src, dest), we define the distance metric
Distance(m, C) for method m and slicing criteria methods C as follows.

Distance(m,C) = min
(src,dest)∈path(C)

d(m, src, dest) (5)
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Main.main (0)

FileList.printFileSize (0)

call FileList.init (1)

call 

FileList.add (10)

call 

FileList.getFileSize (0)

ret 

FileList.getTotalFileSize (1)

ret 

call 

FileList.getFileName (2)

call 

call 

field 

field 

field 

field 

ret 

ret 

call 

ret 

call 

Figure 2: A method-level PDG with the distance metric (gray nodes are the
seed methods)

d(m, src, dest) = fd(src,m) + fd(m, dest) − fd(src, dest)
(6)

In equation (4), path(C) enumerates all reachable paths from src to dest
among C (src ̸= dest). If all methods in C are reachable one another and
|C| = n, path(C) enumerates n(n − 1) pairs. In equation (5), d(m, src, dest) is
zero if the method m is on the shortest path from src to dest. A method on a
shorter path has a lower distance value. If method m is not involved in paths
for all pair (src, dest) ∈ path(C), m does not contribute to interaction among
methods C; we assign Distance(m,C) = ∞ for the method m.

Figure 2 shows the method-level PDG of the example code excluding library
methods. The seed methods are gray nodes. An integer annotating a method
name indicates the distance metric. The distance value of printFileSize
method is zero since the method is on the shortest path from main to getFileSize.
FileList.add has a high distance value 10 since the add is on a longer data-flow
path from main to getFileSize through ArrayList.

3.2 Slicing with Barriers

We calculate a program slice as the union of both forward and backward slice
from given criteria. Slicing criteria is all vertices in the seed methods. We use
two-phase slicing with summary edges [9, 21]. The extension of program slicing
to handle barriers is straightforward; the algorithm simply skips barrier edges in
the traversal process. For summary edge calculations, an algorithm to identify
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Table 2: Rules translating a program slice to a concern graph
Edge type An edge is generated if:
(calls m1 m2 ) The slice includes a call edge

from method m1 to method m2.
(reads m f ) The slice includes a vertex of

method m that has a data-flow
from field f.

(writes m f ) The slice includes a vertex of
method m that has a data-flow
to field f.

(declares c f |m) The slice includes field f or
method m of class c.

(creates m c) The slice includes a vertex of
method m that creates an in-
stance of class c.

(checks m emphc) The slice includes type checking
(instanceof operation) or type
casting operation.

(superclass c1 c2 ) The concern graph includes both
class c1 and class c2.

summary edges blocked by barriers is used that was defined previously [15]. As
the original algorithm handled only vertex barriers, we extended and applied
the algorithm for edge barriers.

3.3 Translating a Slice into a Concern Graph

To ensure the information produced in our approach can be understood easily
by developers, we translate the subgraph of the PDG produced by our approach
into a concern graph [22]. This translation involves two steps: filtering library
vertices and applying translation rules.

First, we remove vertices in the sub-graph of the PDG that correspond to
libraries. We perform this filtering to ensure the concern graph focuses on
the application-specific entities. The filter we applied removes JDK standard
packages including “java.”, “javax.”, “com.sun.” and so on. If a developer
would like to analyze in a functional concern, the developer can customize the
list.

Next, we apply the set of rules translating a program slice into a concern
graph. We used the rules proposed by Kameda et al [13], shown in Table 2.

Figure 3 is an example of the generated concern graph from the example
code using thresholdsim = 0.45, thresholddist = 2 and the seed methods stated
earlier. This concern graph includes only methods to calculate the size of files,
which is the concern of interest, and excludes other concerns; for example not
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Main.main(java.lang.String[]): void

creates FileList

calls FileList.printFileSize(): void

calls FileList.<init>(): void

FileList.<init>(): void

writes files: java.util.ArrayList

FileList.printFileSize(): void

calls getFileSize(java.lang.String): long

calls getTotalFileSize(): long

reads files: java.util.ArrayList

FileList.getTotalFileSize(): long

calls getFileSize(java.lang.String): long

reads files: java.util.ArrayList

FileList.getFileSize(java.lang.String): long

Figure 3: A generated concern graph

including code to list up target files using
FileList.add and FileList.getMethodName.

4 Implementation

We have implemented our method to support functional concern location from
Java programs. Our implementation uses the Soot framework [28].

4.1 PDG

We use the System Dependence Graph for Java defined by Zhao [32]. A ver-
tex in the Java SDG corresponds to Java byte-code (a Jimple code from Soot
specifically). Within a sub-graph of the SDG representing a method implemen-
tation, the edges in a method represent control dependence relations and data
dependence relations. Inter-method edges include method call, parameter-in,
parameter-out and field data-flow edges. Method call and parameter edges for
a method call are connected to methods that might be invoked. Field data-flow
edges are connected for all possible data-flow via field.

To construct a Java SDG, we obtain control-flow, data-flow, a call graph and
points-to set information from the Soot framework. We have chosen context-
insensitive points-to set provided by Spark tool in the framework. We extended
the framework with control-dependence analysis based on iterative dominator
analysis algorithm [4]. We also added a source-to-vertices map generator that
analyze line number attribute in Java bytecode and creates a map from a pair
of class name and line number to SDG vertices.

12



4.2 Input Format

Our tool accepts a list of classes, methods and lines of code. A developer can
list software entities of interest using various tools including a natural language
based search [27], a component search [17], or a keyword search tool such as
grep. A class name is mapped into all methods in the class, and a line is
mapped into a method contains the line, respectively.

4.3 Output Format

A resultant program slice is saved in three formats: a raw slice, a concern graph
in a textual form and in a graphical form. The graphical form can be visualized
by Graphviz [11]. In the graphical form, we adopted a class diagram style that
replaces “declares” edges with a class node containing its methods and fields
and omits intra-class edges to output a smaller graph.

4.4 Thresholds for Heuristics

Our heuristic function has two parameters, thresholdsim and thresholddist.
Currently, a developer must specify these thresholds and can easily vary them
to get a concern graph of reasonable size, possibly starting with tight thresholds
that produce a small concern graph and relaxing them to include more detail
as needed. Eventually, we may be able to suggest or preset the thresholds once
we have gained more experience with the approach.

5 Evaluation

To be helpful for developers, our technique needs to generate concern graphs that
describe a functional concern adequately without overwhelming the developer
in detail. As a first step in evaluating whether the concern graphs produced
are helpful to a developer, we conducted an evaluation in which we compare
concern graphs generated by the SCOLOC tool with concern graphs made for
the concerns by hand by different developers.

5.1 Evaluation Method

Our evaluation involved choosing three functional concerns for each of two soft-
ware systems. We had two developers create concern graphs manually for the
six chosen concerns. We then compared handmade graphs with concern graphs
generated by our method.

We used two software system, jEdit and our SCOLOC tool. jEdit version
is 4.2 final. jEdit comprises 890 classes and 140,665 lines of code including
comments. For jEdit, we chose two functional concerns, Autosave and Marker,
investigated by Robillard [23, 25] as well as a History concern, which is a part of
bug recorded in jEdit bug repository. Our SCOLOC tool comprises 234 classes
and 19,895 lines of code including comments. We selected three different kinds
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Table 3: The target concerns
Concern Task Description
jEdit 4.2:
Autosave Autosave option saves a file being

edited in the background. This concern
is a change request to backup all au-
tosaved versions in a directory.

Marker A user can put markers in a file. This
concern is a request to allow a user to
add a short description for a marker,
and show the description in the Marker
menu.

History jEdit has a problem of IndexOutOf-
BoundsException caused when a prop-
erty “history” size is zero. This concern
is a change request to fix the bug.

SCOLOC:
Batch The SCOLOC tool creates a new algo-

rithm object (using Factory and Strat-
egy pattern [8]) for each slicing. This
concern is a change request to reuse the
objects if the same algorithm is speci-
fied.

Input The SCOLOC tool accepts a pair of
class name and line number. This con-
cern is a change request to modify the
input parser to accept a class name, a
method name, and a wild card selecting
classes and methods.

MethodId The SCOLOC has a problem of saving
a list of method id into a file: the same
file is saved twice during one execution.
This concern is a change request to fix
a problem of MethodIdList file.
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Table 4: The size of handmade concern graphs
Concern Participant 1 Participant 2

C F M C F M
Autosave 7 8 18 12 19 48
Marker 8 11 30 12 8 33
History 3 3 6 12 9 21
Batch 20 58 32 7 11 14
Input 9 5 11 4 1 7
MethodID 5 8 13 7 1 9

of functional concerns from our to-do list for the tool: improving performance,
adding a particular piece of new functionality and fixing a bug. Table 3 lists the
six concerns. Each functional concern is defined as a description of an evolution
task since this is how we envision developers defining functional concerns and
using our approach.

We had two participants create concern graphs as documents for a new
developer who does not know the target software to help maintenance tasks.
Participant 1 is a doctoral student. He read jEdit code for his research and he
also knows program slicing implementations. Participant 2 is a master student.
She also read jEdit code for her research but does not know a program slicing
system. Both participants used IDE to investigate the target software.

We compared the handmade concern graphs with concern graphs generated
by our tool. For tasks Autosave through MethodId, we selected seeds for each
concern using Java search in Eclipse [5], a keyword search system. We searched
concern names “autosave”, “marker”, “methodid” for corresponding functional
concerns. We also searched keyword “create” for Batch concern since the key-
word is used to indicate our Factory pattern. For Input concern, we use keyword
“criterion”. History seeds is different; in this case, we used a stacktrace data (a
list of line number) as concern seeds since a stacktrace data is a starting point
for developer to locate a functional concern related to an error. The criteria
selection task took 10-15 minutes for each concern. This task was completed
before participants created concern graphs. We compared the results of apply-
ing SCOLOC for various threshold values: We varied thresholdsim from 0 to 1
by 0.01. We varied thresholddist from 0 to 20 by 5.

5.2 Size of Concern Graphs

Table 4 shows the size of each concern graph produced by the participants.
Column C, M and F respectively indicates the number of classes, methods and
fields in the concern graph. The minimum graph has 12 vertices, the maximum
one has 110 vertices. The average is 40.8.

Figure 4 plots the number of vertices in generated concern graphs for various
similarity thresholds. The distance threshold is fixed to zero in this graph. This
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Figure 4: The size of generated concern graphs

figure shows that high similarity threshold values result in concern graphs whose
vertices are less than 100. We believe these graphs are likely small enough for
developers to understand.

5.3 Recall and Precision

We use recall, precision and F-value for each pair of a generated graph and a
handmade graph to assess the content of the generated concer graphs. These
values are calculated by the following expressions:

Recall =
|GeneratedGraph ∩ HandmadeGraph|

|HandmadeGraph|

Precision =
|GeneratedGraph ∩ HandmadeGraph|

|GeneratedGraph|

F − value =
2 · Recall · Precision

Recall + Precision

An F-value represents the trade-off between recall and precision. Table 5
shows the best pairs of recall and precision according to F-value. Table 5 shows
the threshold values in the columns sim and dist to indicate thresholdsim and
thresholddist respectively. If there are two or more highest (tied) pairs, we chose
the maximum similarity threshold and the minimum distance threshold since
the pair of thresholds produces the smallest graph amongst the tied pairs.

Figure 5 shows the F-values of the generated graphs for each participant;
For all of these figures we set thresholddist = 0 as it produced good F-values as
shown in Table 5. We found two trends in F-value distribution:

1. In most cases, the best F-value appears when thresholdsim ranges 0.5-0.6.
Higher threshold values also result in good F-values.

16



Table 5: The best recall and precision

System Concern Participant 1 Participant 2
sim dist recall precision sim dist recall precision

Autosave 0.62 0 0.5758 0.4634 0.58 0 0.4615 0.6792
jEdit Marker 0.58 0 0.6042 0.7073 0.58 0 0.5385 0.6829

History 0.74 0 0.5833 0.2121 1.00 0 0.4419 0.6129
Batch 0.35 0 0.6542 0.4046 0.54 0 0.5938 0.4872

SCOLOC Input 0.51 0 0.6000 0.5172 0.38 0 0.2500 0.0536
MethodId 0.77 10 0.6667 0.9000 1.00 0 0.4444 0.4706
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Figure 5: F-value for each participant
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2. Similarity threshold values less than 0.2 result in low F-values because a
concern graph generated with a lower similarity value is generally much
larger than a handmade concern graph.

We also found two exceptional cases.

1. For the MethodId concern, thresholdsim = 1.0 results in the highest F-
value if thresholddist = 0. We think this is because the seed methods for
the concern are well localized in four classes; most of methods are filtered
out by the distance metric.

2. Even when we generate concern graphs with SCOLOC with a high sim-
ilarity threshold for the Batch and Input concerns, we see low F-values
compared to participant 1 and participant 2 respectively. In the case of
participant 1, his Batch concern graph is too large to compare with gen-
erated concern graphs; the handmade concern graph has 107 vertices but
the SCOLOC-generated concern graph has only 17 vertices. In the case
of participant 2, her Input concern graph included only methods that
prepare parameters for the input functionality but excluded the methods
of the input functionality. Concern graphs generated by the SCOLOC
included few methods selected by participant 2.

Overall, since our approach extracts smaller graphs for higher similarity
threshold values, a developer can start to read graphs from a smallest one and
proceed to larger graphs with lower similarity values to get additional detail.

5.4 Difference between Concern Graphs

To get a better sense of where SCOLOC might be including too much or
not enough in a concern graph, we calculated differences between SCOLOC-
generated graphs and handmade graphs and analyzed the differences with par-
ticipants. We found several reasons for the differences.

There were six kinds of situations in which SCOLOC included some entities
the participants excluded.

1. Participants excluded fields used only in accessor methods. For example,
flags field is only accessed through getFlags and setFlags methods
in jEdit. A participant included these methods in a concern graph, but
excluded the field.

2. Participants excluded fields initialized by a constant value. A participant
included a constructor, but omitted the fields.

3. Participants omitted several polymorphic methods. Typically, they in-
cluded only a superclass method.

4. Participants missed implicit constructor calls for a superclass. It is hard
to recognize a superclass without explicit super constructor call.
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5. Participants forgot to include several methods after they read the methods.
This is a simple human error.

6. Generated graphs included methods that have similar name but imple-
ment a different functionality. These methods are false positive of our
approach. An example is a pair of autosave() and save() methods in
BufferIORequest class. These methods have high similarity each other
but only autosave() method is related to the concern.

These differences do not prevent understanding a functional concern since
most of entities are related to concern code.

There were three situations in which a participant included entities that were
excluded by SCOLOC.

1. In several cases, SCOLOC left out control-flow (method call) relations
because the distance metric extracted other shorter flow paths amongst
the entities. One example is an option dialog in jEdit. A dialog calls a
properyChanged method to update other classes using options after saving
the options. Data-flow paths from the dialog to classes loading options
via a manager class are shorter than notification method call path from
the dialog to option users. Therefore, our tool extracted only data-flow.
Participants included both paths in concern graphs.

2. Participants included fields written by a method but never read in a con-
cern. Our approach excluded these fields since program slicing uses data-
flow information. We found two cases. One case involved fields that store
the output data of a concern. The other case contains fields accidentally
added to a concern graph by a participant. The former case should be
included in concern graphs, but the latter case should be excluded. Dis-
tinguishing these two cases automatically is a future work.

3. Participants included several polymorphic methods. In this case, partici-
pants used a type hierarchy analysis tool and added all of them into their
concern graph. The SCOLOC tool excluded methods of subclasses that
are unreachable from a call site.

Many of these cases involve a participant accidentally including an entity
of less importance that happens to be collocated with more important enti-
ties. SCOLOC found the latter but not the former; however not including the
accidental entity affects precision and recall values.

There were several situations in which the technology did not allow a par-
ticipant to capture desired information in a concern graph.

• Our tool does not support interface handling. Participants wanted an
implements edge connecting a class to a event listener interface since event
listeners have important roles in a GUI application such as jEdit. Our tool
also does not support a call edge to an abstract method since PDG includes
only concrete methods.
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• Our tool does not support constant fields that are removed from bytecode
during compilation. Since many flags are manipulated by setFlag(int)
method with constant values in jEdit, participants wanted to include con-
stant values in concern graphs.

• A concern graph cannot represent instance-aware method calls, such as
Class.fieldName.getX(). This is represented as a pair of a field access
and a method call.

• A concern graph does not support specialized parameter/return type, such
as String List.get(int) instead of Object List.get(int). This kind
of return type checking is represented as a pair of a method call edge and
a type check edge.

The results of the evaluaiton gave us ideas for improving our approach. One
direction for the future work is extending the concern graph representation with
additional information, such as an instance-awareness and data-flow amongst
edges in a concern graph.

6 Conclusion

To complete a maintenance task thoroughly, a software developer needs to un-
derstand how the software entities related to the functional concerns of interest
collaborate. To aid a developer in locating and understanding a functional
concern, we have proposed, implemented and evaluated an approach based on
program slicing.

We introduced the similarity and distance metrics into program slicing to
stop graph traversal during program slicing to extract a small set of entities
closely related to the entities of interest to a developer.

We compared concern graphs generated by the SCOLOC tool with concern
graphs made by hand. The result shows the SCOLOC effectively reduces the
size of concern graphs and keeps interesting entities in the concern graphs.

In the future work, we will have developers use the SCOLOC tool for main-
tenance tasks. We are planning to generate a more expressive concern graph
by detecting patterns in the concern graph. We also interested in application
of aspect mining techniques to exclude crosscutting concerns from a functional
concern graph.
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